

    
      
          
            
  
Welcome to a Little Book of R for Bioinformatics!

By Avril Coghlan [http://www.sanger.ac.uk/research/projects/parasitegenomics/],
Wellcome Trust Sanger Institute, Cambridge, U.K.
Email: alc@sanger.ac.uk

This is a simple introduction to bioinformatics, with a focus on genome analysis, using the R statistics software.

To encourage research into neglected tropical diseases such as leprosy, Chagas disease, trachoma, schistosomiasis etc.,
most of the examples in this booklet are for analysis of the genomes of the organisms that cause these diseases.

There is a pdf version of this booklet available at:
https://github.com/avrilcoghlan/LittleBookofRBioinformatics/raw/master/_build/latex/Bioinformatics.pdf.

If you like this booklet, you may also like to check out my booklet on using
R for biomedical statistics,
http://a-little-book-of-r-for-biomedical-statistics.readthedocs.org/, and
my booklet on using R for time series analysis,
http://a-little-book-of-r-for-time-series.readthedocs.org/.
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How to install R and a Brief Introduction to R


Introduction to R

This little booklet has some information on how to use R for bioinformatics.

R (www.r-project.org [http://www.r-project.org/]) is a commonly used
free Statistics software. R allows you to carry out statistical
analyses in an interactive mode, as well as allowing simple programming.




Installing R

To use R, you first need to install the R program on your computer.


How to check if R is installed on a Windows PC

Before you install R on your computer, the first thing to do is to check whether
R is already installed on your computer (for example, by a previous user).

These instructions will focus on installing R on a Windows PC. However, I will also
briefly mention how to install R on a Macintosh or Linux computer (see below).

If you are using a Windows PC, there are two ways you can check whether R is
already isntalled on your computer:


	Check if there is an “R” icon on the desktop of the computer that you are using.
If so, double-click on the “R” icon to start R. If you cannot find an “R” icon, try step 2 instead.

	Click on the “Start” menu at the bottom left of your Windows desktop, and then move your
mouse over “All Programs” in the menu that pops up. See if “R” appears in the list
of programs that pops up. If it does, it means that R is already installed on your
computer, and you can start R by selecting “R”  (or R X.X.X, where X.X.X gives the version of R,
eg. R 2.10.0) from the list.



If either (1) or (2) above does succeed in starting R, it means that R is already installed
on the computer that you are using. (If neither succeeds, R is not installed yet).
If there is an old version of R installed on the Windows PC that you are using,
it is worth installing the latest version of R, to make sure that you have all the
latest R functions available to you to use.




Finding out what is the latest version of R

To find out what is the latest version of R, you can look at the CRAN (Comprehensive
R Network) website, http://cran.r-project.org/.

Beside “The latest release” (about half way down the page), it will say something like
“R-X.X.X.tar.gz” (eg. “R-2.12.1.tar.gz”). This means that the latest release of R is X.X.X (for
example, 2.12.1).

New releases of R are made very regularly (approximately once a month), as R is actively being
improved all the time. It is worthwhile installing new versions of R regularly, to make sure
that you have a recent version of R (to ensure compatibility with all the latest versions of
the R packages that you have downloaded).




Installing R on a Windows PC

To install R on your Windows computer, follow these steps:


	Go to http://ftp.heanet.ie/mirrors/cran.r-project.org.

	Under “Download and Install R”, click on the “Windows” link.

	Under “Subdirectories”, click on the “base” link.

	On the next page, you should see a link saying something like “Download R 2.10.1 for Windows” (or R X.X.X, where X.X.X gives the version of R, eg. R 2.11.1).
Click on this link.

	You may be asked if you want to save or run a file “R-2.10.1-win32.exe”. Choose “Save” and
save the file on the Desktop. Then double-click on the icon for the file to run it.

	You will be asked what language to install it in - choose English.

	The R Setup Wizard will appear in a window. Click “Next” at the bottom of the R Setup wizard
window.

	The next page says “Information” at the top. Click “Next” again.

	The next page says “Information” at the top. Click “Next” again.

	The next page says “Select Destination Location” at the top.
By default, it will suggest to install R in “C:\Program Files” on your computer.

	Click “Next” at the bottom of the R Setup wizard window.

	The next page says “Select components” at the top. Click “Next” again.

	The next page says “Startup options” at the top. Click “Next” again.

	The next page says “Select start menu folder” at the top. Click “Next” again.

	The next page says “Select additional tasks” at the top. Click “Next” again.

	R should now be installed. This will take about a minute. When R has finished, you will
see “Completing the R for Windows Setup Wizard” appear. Click “Finish”.

	To start R, you can either follow step 18, or 19:

	Check if there is an “R” icon on the desktop of the computer that you are using.
If so, double-click on the “R” icon to start R. If you cannot find an “R” icon, try step 19 instead.

	Click on the “Start” button at the bottom left of your computer screen, and then
choose “All programs”, and start R by selecting “R”  (or R X.X.X, where
X.X.X gives the version of R, eg. R 2.10.0) from the menu of programs.

	The R console (a rectangle) should pop up:



[image: image3]




How to install R on non-Windows computers (eg. Macintosh or Linux computers)

The instructions above are for installing R on a Windows PC. If you want to install R
on a computer that has a non-Windows operating system (for example, a Macintosh or computer running Linux,
you should download the appropriate R installer for that operating system at
http://ftp.heanet.ie/mirrors/cran.r-project.org [http://ftp.heanet.ie/mirrors/cran.r-project.org/] and
follow the R installation instructions for the appropriate operating system at
http://ftp.heanet.ie/mirrors/cran.r-project.org/doc/FAQ/R-FAQ.html#How-can-R-be-installed_003f).






Installing R packages

R comes with some standard packages that are installed when you install R. However, in this
booklet I will also tell you how to use some additional R packages that are useful, for example,
the “rmeta” package. These additional packages do not come with the standard installation of R,
so you need to install them yourself.


How to install an R package

Once you have installed R on a Windows computer (following the steps above), you can install
an additional package by following the steps below:


	To start R, follow either step 2 or 3:

	Check if there is an “R” icon on the desktop of the computer that you are using.
If so, double-click on the “R” icon to start R. If you cannot find an “R” icon, try step 3 instead.

	Click on the “Start” button at the bottom left of your computer screen, and then
choose “All programs”, and start R by selecting “R”  (or R X.X.X, where
X.X.X gives the version of R, eg. R 2.10.0) from the menu of programs.

	The R console (a rectangle) should pop up.

	Once you have started R, you can now install an R package (eg. the “rmeta” package) by
choosing “Install package(s)” from the “Packages” menu at the top of the R console.
This will ask you what website you want to download the package from, you should choose
“Ireland” (or another country, if you prefer). It will also bring up a list of available
packages that you can install, and you should choose the package that you want to install
from that list (eg. “rmeta”).

	This will install the “rmeta” package.

	The “rmeta” package is now installed. Whenever you want to use the “rmeta” package after this,
after starting R, you first have to load the package by typing into the R console:



> library("rmeta")





Note that there are some additional R packages for bioinformatics that are part of a special
set of R packages called Bioconductor (www.bioconductor.org [http://www.bioconductor.org/])
such as the “yeastExpData” R package, the “Biostrings” R package, etc.).
These Bioconductor packages need to be installed using a different, Bioconductor-specific procedure
(see How to install a Bioconductor R package below).




How to install a Bioconductor R package

The procedure above can be used to install the majority of R packages. However, the
Bioconductor set of bioinformatics R packages need to be installed by a special procedure.
Bioconductor (www.bioconductor.org [http://www.bioconductor.org/])
is a group of R packages that have been developed for bioinformatics. This includes
R packages such as “yeastExpData”, “Biostrings”, etc.

To install the Bioconductor packages, follow these steps:


	To start R, follow either step 2 or 3:

	Check if there is an “R” icon on the desktop of the computer that you are using.
If so, double-click on the “R” icon to start R. If you cannot find an “R” icon, try step 3 instead.

	Click on the “Start” button at the bottom left of your computer screen, and then choose “All programs”, and start R by selecting “R”  (or R X.X.X, where X.X.X gives the version of R, eg. R 2.10.0) from the menu of programs.

	The R console (a rectangle) should pop up.

	Once you have started R, now type in the R console:



> source("http://bioconductor.org/biocLite.R")
> biocLite()






	This will install a core set of Bioconductor packages (“affy”, “affydata”, “affyPLM”,
“annaffy”, “annotate”, “Biobase”, “Biostrings”, “DynDoc”, “gcrma”, “genefilter”,
“geneplotter”, “hgu95av2.db”, “limma”, “marray”, “matchprobes”, “multtest”, “ROC”,
“vsn”, “xtable”, “affyQCReport”).
This takes a few minutes (eg. 10 minutes).

	At a later date, you may wish to install some extra Bioconductor packages that do not belong
to the core set of Bioconductor packages. For example, to install the Bioconductor package called
“yeastExpData”, start R and type in the R console:



> source("http://bioconductor.org/biocLite.R")
> biocLite("yeastExpData")






	Whenever you want to use a package after installing it, you need to load it into R by typing:



> library("yeastExpData")










Running R

To use R, you first need to start the R program on your computer.
You should have already installed R on your computer (see above).

To start R, you can either follow step 1 or 2:
1. Check if there is an “R” icon on the desktop of the computer that you are using.


If so, double-click on the “R” icon to start R. If you cannot find an “R” icon, try step 2 instead.



	Click on the “Start” button at the bottom left of your computer screen, and then choose “All programs”, and start R by selecting “R”  (or R X.X.X, where X.X.X gives the version of R, eg. R 2.10.0) from the menu of programs.



This should bring up a new window, which is the R console.




A brief introduction to R

You will type R commands into the R console in order to carry out
analyses in R. In the R console you will see:

>





This is the R prompt. We type the commands needed for a particular
task after this prompt. The command is carried out after you hit
the Return key.

Once you have started R, you can start typing in commands, and the
results will be calculated immediately, for example:

> 2*3
[1] 6
> 10-3
[1] 7





All variables (scalars, vectors, matrices, etc.) created by R are
called objects. In R, we assign values to variables using an
arrow. For example, we can assign the value 2*3 to the variable
x using the command:

> x <- 2*3





To view the contents of any R object, just type its name, and the
contents of that R object will be displayed:

> x
[1] 6





There are several possible different types of objects in R,
including scalars, vectors, matrices, arrays, data frames, tables,
and lists. The scalar variable x above is one example of an R
object. While a scalar variable such as x has just one element, a
vector consists of several elements. The elements in a vector are
all of the same type (eg. numeric or characters), while lists may
include elements such as characters as well as numeric quantities.

To create a vector, we can use the c() (combine) function. For
example, to create a vector called myvector that has elements
with values 8, 6, 9, 10, and 5, we type:

> myvector <- c(8, 6, 9, 10, 5)





To see the contents of the variable myvector, we can just type
its name:

> myvector
[1]  8  6  9 10  5





The [1] is the index of the first element in the vector. We can
extract any element of the vector by typing the vector name with
the index of that element given in square brackets. For example, to
get the value of the 4th element in the vector myvector, we
type:

> myvector[4]
[1] 10





In contrast to a vector, a list can contain elements of different
types, for example, both numeric and character elements. A list can
also include other variables such as a vector. The list() function
is used to create a list. For example, we could create a list
mylist by typing:

> mylist <- list(name="Fred", wife="Mary", myvector)





We can then print out the contents of the list mylist by typing
its name:

> mylist
$name
[1] "Fred"

$wife
[1] "Mary"

[[3]]
[1]  8  6  9 10  5





The elements in a list are numbered, and can be referred to using
indices. We can extract an element of a list by typing the list
name with the index of the element given in double square brackets
(in contrast to a vector, where we only use single square
brackets). Thus, we can extract the second and third elements from
mylist by typing:

> mylist[[2]]
[1] "Mary"
> mylist[[3]]
[1]  8  6  9 10  5





Elements of lists may also be named, and in this case the elements
may be referred to by giving the list name, followed by “$”,
followed by the element name. For example, mylist$name is the
same as mylist[[1]] and mylist$wife is the same as
mylist[[2]]:

> mylist$wife
[1] "Mary"





We can find out the names of the named elements in a list by using
the attributes() function, for example:

> attributes(mylist)
$names
[1] "name" "wife" ""





When you use the attributes() function to find the named elements
of a list variable, the named elements are always listed under a
heading “$names”. Therefore, we see that the named elements of the
list variable mylist are called “name” and “wife”, and we can
retrieve their values by typing mylist$name and mylist$wife,
respectively.

Another type of object that you will encounter in R is a table
variable. For example, if we made a vector variable mynames
containing the names of children in a class, we can use the table()
function to produce a table variable that contains the number of
children with each possible name:

> mynames <- c("Mary", "John", "Ann", "Sinead", "Joe", "Mary", "Jim", "John", "Simon")
> table(mynames)
mynames
   Ann    Jim    Joe   John   Mary  Simon Sinead
     1      1      1      2      2      1      1





We can store the table variable produced by the function table(),
and call the stored table “mytable”, by typing:

> mytable <- table(mynames)





To access elements in a table variable, you need to use double
square brackets, just like accessing elements in a list. For
example, to access the fourth element in the table mytable (the
number of children called “John”), we type:

> mytable[[4]]
[1] 2





Alternatively, you can use the name of the fourth element in
the table (“John”) to find the value of that table element:

> mytable[["John"]]
[1] 2





Functions in R usually require arguments, which are input
variables (ie. objects) that are passed to them, which they then
carry out some operation on. For example, the log10() function is
passed a number, and it then calculates the log to the base 10 of
that number:

> log10(100)
2





In R, you can get help about a particular function by using the
help() function. For example, if you want help about the log10()
function, you can type:

> help("log10")





When you use the help() function, a box or webpage will pop up with
information about the function that you asked for help with.

If you are not sure of the name of a function, but think you know
part of its name, you can search for the function name using the
help.search() and RSiteSearch() functions. The help.search() function
searches to see if you already have a function installed (from one of
the R packages that you have installed) that may be related to some
topic you’re interested in. The RSiteSearch() function searches all
R functions (including those in packages that you haven’t yet installed)
for functions related to the topic you are interested in.

For example, if you want to know if there
is a function to calculate the standard deviation of a set of
numbers, you can search for the names of all installed functions containing
the word “deviation” in their description by typing:

> help.search("deviation")
Help files with alias or concept or title matching
'deviation' using fuzzy matching:

genefilter::rowSds
                    Row variance and standard deviation of
                    a numeric array
nlme::pooledSD      Extract Pooled Standard Deviation
stats::mad          Median Absolute Deviation
stats::sd           Standard Deviation
vsn::meanSdPlot     Plot row standard deviations versus row





Among the functions that were found, is the function sd() in the
“stats” package (an R package that comes with the standard R
installation), which is used for calculating the standard deviation.

In the example above, the help.search() function found a relevant
function (sd() here). However, if you did not find what you were looking
for with help.search(), you could then use the RSiteSearch() function to
see if a search of all functions described on the R website may find
something relevant to the topic that you’re interested in:

> RSiteSearch("deviation")





The results of the RSiteSearch() function will be hits to descriptions
of R functions, as well as to R mailing list discussions of those
functions.

We can perform computations with R using objects such as scalars
and vectors. For example, to calculate the average of the values in
the vector myvector (ie. the average of 8, 6, 9, 10 and 5), we
can use the mean() function:

> mean(myvector)
[1] 7.6





We have been using built-in R functions such as mean(),
length(), print(), plot(), etc. We can also create our own
functions in R to do calculations that you want to carry out very
often on different input data sets. For example, we can create a
function to calculate the value of 20 plus square of some input
number:

> myfunction <- function(x) { return(20 + (x*x)) }





This function will calculate the square of a number (x), and then
add 20 to that value. The return() statement returns the calculated
value. Once you have typed in this function, the function is then
available for use. For example, we can use the function for
different input numbers (eg. 10, 25):

> myfunction(10)
[1] 120
> myfunction(25)
[1] 645





To quit R, type:

> q()








Links and Further Reading

Some links are included here for further reading.

For a more in-depth introduction to R, a good online tutorial is
available on the “Kickstarting R” website,
cran.r-project.org/doc/contrib/Lemon-kickstart [http://cran.r-project.org/doc/contrib/Lemon-kickstart/].

There is another nice (slightly more in-depth) tutorial to R
available on the “Introduction to R” website,
cran.r-project.org/doc/manuals/R-intro.html [http://cran.r-project.org/doc/manuals/R-intro.html].
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Neglected Tropical diseases

Neglected tropical diseases are serious diseases that affect many people in
tropical countries and which have been relatively little studied. The World
Health Organisation lists the following as neglected tropical diseases:
trachoma, leprosy, schistosomiasis, soil transmitted helminths, lymphatic
filariasis, onchocerciasis, Buruli ulcer, yaws, Chagas disease, African trypanosomiasis,
leishmaniasis, Dengue fever, rabies, Dracunculiasis (guinea-worm disease),
and Fascioliasis (see http://www.who.int/neglected_diseases/diseases/en/).

The genomes of many of the organisms that cause neglected tropical diseases have
been fully sequenced, or are currently being sequenced, including:


	the bacterium Chlamydia trachomatis [http://www.ncbi.nlm.nih.gov/genomeprj?Db=genomeprj&cmd=ShowDetailView&TermToSearch=13886], which causes trachoma

	the bacterium Mycobacterium leprae [http://www.ncbi.nlm.nih.gov/genomeprj?cmd=search&term=txid1769[orgn]], which causes leprosy

	the bacterium Mycobacterium ulcerans [http://www.ncbi.nlm.nih.gov/genomeprj?cmd=search&term=txid1809[orgn]], which causes Buruli ulcer

	the bacterium Treponema pallidum subsp. pertenue [http://www.ncbi.nlm.nih.gov/genomeprj?cmd=search&term=txid160[orgn]], which causes yaws

	the protist Trypanosoma cruzi [http://www.ncbi.nlm.nih.gov/genomeprj?cmd=search&term=txid5693[orgn]], which causes Chagas disease

	the protist Trypanosoma brucei [http://www.ncbi.nlm.nih.gov/genomeprj?cmd=search&term=txid5691[orgn]], which causes African trypanosomiasis

	the protist Leishmania major [http://www.ncbi.nlm.nih.gov/genomeprj?cmd=search&term=txid5664[orgn]], and related Leishmania species, which cause leishmaniasis

	the schistosome worm Schistosoma mansoni [http://www.ncbi.nlm.nih.gov/genomeprj?cmd=search&term=txid6183[orgn]], which causes schistosomiasis

	the nematode worms Brugia malayi [http://www.ncbi.nlm.nih.gov/genomeprj?cmd=search&term=txid6279[orgn]] and Wuchereria bancrofti [http://www.ncbi.nlm.nih.gov/genomeprj?cmd=search&term=txid6293[orgn]], which cause lymphatic filariasis

	the nematode worm Loa loa [http://www.ncbi.nlm.nih.gov/genomeprj?cmd=search&term=txid7209[orgn]], which causes subcutaneous filariasis

	the nematode worm Onchocerca volvulus [http://www.ncbi.nlm.nih.gov/genomeprj?cmd=search&term=txid6282[orgn]], which causes onchocerciasis

	the nematode worm Necator americanus [http://www.ncbi.nlm.nih.gov/genomeprj?cmd=search&term=txid51031[orgn]], which causes soil-transmitted helminthiasis

	the Dengue virus, which causes Dengue fever

	the Rabies virus, which causes Rabies



To encourage research into these organisms, many of the examples in this booklet are based on analysing these genomes.
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DNA Sequence Statistics (1)


Using R for Bioinformatics

This booklet tells you how to use the R software to carry out some simple analyses
that are common in bioinformatics. In particular, the focus is on computational analysis
of biological sequence data such as genome sequences and protein sequences.

This booklet assumes that the reader has some basic knowledge of biology, but not
necessarily of bioinformatics. The focus of the booklet is to explain simple bioinformatics
analysis, and to explain how to carry out these analyses using R.

To use R, you first need to start the R program on your computer.
You should have already installed R on your computer (if not, for instructions on how to
install R, see How to install R).




R packages for bioinformatics: Bioconductor and SeqinR

Many authors have written R packages for performing a wide variety
of analyses. These do not come with the standard R installation,
but must be installed and loaded as “add-ons”.

Bioinformaticians have written several specialised packages for
R. In this practical, you will learn to use the SeqinR package to
retrieve sequences from a DNA sequence database, and to carry out
simple analyses of DNA sequences.

Some well known bioinformatics packages for R are the Bioconductor
set of R packages
(www.bioconductor.org [http://www.bioconductor.org/]), which
contains several packages with many R functions for analysing
biological data sets such as microarray data; and the SeqinR
package
(pbil.univ-lyon1.fr/software/seqinr/home.php?lang=eng [http://pbil.univ-lyon1.fr/software/seqinr/home.php?lang=eng]),
which contains R functions for obtaining sequences from DNA and protein
sequence databases, and for analysing DNA and protein sequences.

To use function from the SeqinR package,
we first need to install the SeqinR package (for instructions on how to
install an R package, see How to install an R package).
Once you have installed the “SeqinR” R package, you can load the “SeqinR” R package by typing:

> library("seqinr")





Remember that you can ask for more information about a particular R
command by using the help() function. For example, to ask for more
information about the library() function, you can type:

> help("library")








FASTA format

The FASTA format is a simple and widely used format for storing
biological (DNA or protein) sequences. It was first used by the
FASTA program for sequence alignment. It begins with a single-line
description starting with a “>” character, followed by lines of
sequences. Here is an example of a FASTA file:

> A06852 183 residues
MPRLFSYLLGVWLLLSQLPREIPGQSTNDFIKACGRELVRLWVEICGSVSWGRTALSLEE
PQLETGPPAETMPSSITKDAEILKMMLEFVPNLPQELKATLSERQPSLRELQQSASKDSN
LNFEEFKKIILNRQNEAEDKSLLELKNLGLDKHSRKKRLFRMTLSEKCCQVGCIRKDIAR
LC








The NCBI sequence database

The National Centre for Biotechnology Information (NCBI)
(www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov/]) in the US
maintains a huge database of all the DNA and protein sequence data
that has been collected, the NCBI Sequence Database. This also a
similar database in Europe, the European Molecular Biology
Laboratory (EMBL) Sequence Database
(www.ebi.ac.uk/embl [http://www.ebi.ac.uk/embl/]), and also a
similar database in Japan, the DNA Data Bank of Japan (DDBJ;
www.ddbj.nig.ac.jp [http://www.ddbj.nig.ac.jp/]). These three
databases exchange data every night, so at any one point in time,
they contain almost identical data.

Each sequence in the NCBI Sequence Database is stored in a separate
record, and is assigned a unique identifier that can be used to
refer to that sequence record. The identifier is known as an
accession, and consists of a mixture of numbers and letters. For
example, Dengue virus causes Dengue fever [http://apps.who.int/tdr/svc/diseases/dengue],
which is classified as a neglected tropical disease by the WHO.
by any one of four types of Dengue virus: DEN-1, DEN-2, DEN-3, and DEN-4.
The NCBI accessions for the DNA sequences of the DEN-1, DEN-2, DEN-3, and DEN-4
Dengue viruses are NC_001477, NC_001474, NC_001475 and NC_002640, respectively.

Note that because the NCBI Sequence Database, the EMBL Sequence
Database, and DDBJ exchange data every night, the DEN-1 (and DEN-2, DEN-3, DEN-4) Dengue virus
sequence will be present in all three databases, but it will
have different accessions in each database, as they each use their
own numbering systems for referring to their own sequence records.




Retrieving genome sequence data via the NCBI website

You can easily retrieve DNA or protein sequence data from the NCBI
Sequence Database via its website
www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov/].

The Dengue DEN-1 DNA sequence is a viral DNA sequence, and as
mentioned above, its NCBI accession is NC_001477. To retrieve
the DNA sequence for the Dengue DEN-1 virus from NCBI, go to the NCBI
website, type “NC_001477” in the Search box at the top of
the webpage, and press the “Search” button beside the Search box:

[image: image0]

On the results page you will see the number of hits to “NC_001477”
in each of the NCBI databases on the NCBI website. There are many
databases on the NCBI website, for example, the “PubMed” data
contains abstracts from scientific papers, the “Nucleotide”
database contains DNA and RNA sequence data, the “Protein” data
contains protein sequence data, and so on. The picture below shows
what the results page should look like for your NC_001477 search.
As you are looking for the DNA sequence of the Dengue DEN-1 virus
genome, you expect to see a hit in the NCBI Nucleotide database,
and indeed there is hit in the Nucleotide database (indicated by
the “1” beside the icon for the Nucleotide database):

[image: image1]

To look at the one sequence found in the Nucleotide database, you
need to click on the icon for the NCBI Nucleotide database on the
results page for the search:

[image: image2]

When you click on the icon for the NCBI Nucleotide database, it
will bring you to the record for NC_001477 in the NCBI Nucleotide
database. This will contain the name and NCBI accession of the
sequence, as well as other details such as any papers describing
the sequence:

[image: image3]

To retrieve the DNA sequence for the DEN-1 Dengue virus genome
sequence as a FASTA format sequence file, click on “Send” at the top
right of the NC_001477 sequence record webpage, and then choose
“File” in the pop-up menu that appears, and then choose FASTA
from the “Format” menu that appears, and click on “Create file”.

A box will pop up asking you what to name the file, and where to save it. You should give it a sensible
name (eg. “den1.fasta”) and save it in a place where you will
remember (eg. in the “My Documents” folder is a good idea):

[image: image4]

You can now open the FASTA file containing the DEN-1 Dengue virus genome
sequence using WordPad on your computer. To open WordPad, click on
“Start” on the bottom left of your screen, click on “All Programs”
in the menu that appears, and then select “Accessories” from the
menu that appears next, and then select “WordPad” from the menu
that appears next. WordPad should start up. In Wordpad, choose
“Open” from the “File” menu. The WordPad “Open” dialog will appear.
Set “Files of type” to “All Documents” at the bottom of the WordPad
“Open” dialog. You should see a list of files, now select the file
that contains the DEN-1 Dengue virus sequence (eg. “den1.fasta”). The
contents of the FASTA format file containing the Dengue DEN-1 sequence
should now be displayed in WordPad:
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Retrieving genome sequence data using SeqinR

Instead of going to the NCBI website to retrieve sequence data from the NCBI database, you
can retrieve sequence data from NCBI directly from R, by using the SeqinR R package.

For example, you learnt above how to retrieve the DEN-1 Dengue virus genome sequence,
which has NCBI accession NC_001477, from the NCBI website. To retrieve a sequence with
a particular NCBI accession, you can use R function “getncbiseq()” below, which you will
first need to copy and paste into R:

> getncbiseq <- function(accession)
  {
     require("seqinr") # this function requires the SeqinR R package
     # first find which ACNUC database the accession is stored in:
     dbs <- c("genbank","refseq","refseqViruses","bacterial")
     numdbs <- length(dbs)
     for (i in 1:numdbs)
     {
        db <- dbs[i]
        choosebank(db)
        # check if the sequence is in ACNUC database 'db':
        resquery <- try(query(".tmpquery", paste("AC=", accession)), silent = TRUE)
        if (!(inherits(resquery, "try-error")))
        {
           queryname <- "query2"
           thequery <- paste("AC=",accession,sep="")
           query(`queryname`,`thequery`)
           # see if a sequence was retrieved:
           seq <- getSequence(query2$req[[1]])
           closebank()
           return(seq)
        }
        closebank()
     }
     print(paste("ERROR: accession",accession,"was not found"))
  }





Once you have copied and pasted the function getncbiseq() into R, you can use it to retrieve
a sequence from the NCBI Nucleotide database, such as the sequence for the DEN-1 Dengue virus
(accession NC_001477):

> dengueseq <- getncbiseq("NC_001477")





The variable dengueseq is a vector containing the nucleotide
sequence. Each element of the vector contains one nucleotide of the
sequence. Therefore, to print out a certain subsequence of the
sequence, we just need to type the name of the vector dengueseq
followed by the square brackets containing the indices for those
nucleotides. For example, the following command prints out the
first 50 nucleotides of the DEN-1 Dengue virus genome sequence:

> dengueseq[1:50]
[1] "a" "g" "t" "t" "g" "t" "t" "a" "g" "t" "c" "t" "a" "c" "g" "t" "g" "g" "a"
[20] "c" "c" "g" "a" "c" "a" "a" "g" "a" "a" "c" "a" "g" "t" "t" "t" "c" "g" "a"
[39] "a" "t" "c" "g" "g" "a" "a" "g" "c" "t" "t" "g"





Note that dengueseq[1:50] refers to the elements of the vector
dengueseq with indices from 1-50. These elements contain the
first 50 nucleotides of the DEN-1 Dengue virus sequence.




Writing sequence data out as a FASTA file

If you have retrieved a sequence from the NCBI database using the
“getncbiseq()” function, you may want to save the sequence to a FASTA-format
file on your computer, in case you need the sequence for further analyses (either
in R or in other software).

You can write out a sequence to a FASTA-format file in R by using the “write.fasta()”
function from the SeqinR R package. The write.fasta() function requires that you tell
it the name of the output file using the “file.out” argument (input). You also need
to specify the R variable that contains the sequence using the “sequences” argument,
and the name that you want to give to the sequence using the “names” argument.

For example, if you have stored the DEN-1 Dengue virus sequence in a vector dengueseq,
to write out the sequence to a FASTA-format file called “den1.fasta” that contains
the sequence labelled as “DEN-1”, you can type:

> write.fasta(names="DEN-1", sequences=dengueseq, file.out="den1.fasta")








Reading sequence data into R

Using the SeqinR package in R, you can easily read a DNA sequence
from a FASTA file into R. For example, we described above how to
retrieve the DEN-1 Dengue virus genome sequence from the NCBI
database, or from R using the getncbiseq() function, and save it in a
FASTA format file (eg. “den1.fasta”).

You can read this FASTA format file into R using the read.fasta()
function from the SeqinR R package:

> library("seqinr")
> dengue <- read.fasta(file = "den1.fasta")





Note that R expects the files that you read in (eg. “den1.fasta”)
to be in the “My Documents” folder on your computer, so if you
stored “den1.fasta” somewhere else, you will have to move or copy
it into “My Documents”.

The command above reads the contents of the fasta format file
den1.fasta into an R object called dengue. The variable
dengue is an R list object. As explained above, a list is an R
object that is like a vector, but can contain elements that are
numeric and/or contain characters. In this case, the list dengue
contains information from the FASTA file that you have read in (ie.
the name given to the dengue sequence in the FASTA file, and the DNA sequence
itself). In fact, the first element of the list object dengue
contains the the DNA sequence. As described above, we can access
the elements of an R list object using double square brackets.
Thus, we can store the DNA sequence for DEN-1 Dengue virus in a
variable dengueseq by typing:

> dengueseq <- dengue[[1]]





Now the variable dengueseq is a vector containing the nucleotide
sequence.




Length of a DNA sequence

Once you have retrieved a DNA sequence, we can obtain some simple
statistics to describe that sequence, such as the sequence’s total
length in nucleotides. In the above example, we retrieved the
DEN-1 Dengue virus genome sequence, and stored it in the vector
variable dengueseq. To subsequently obtain the length of the
genome sequence, we would use the length() function, typing:

> length(dengueseq)
[1] 10735





The length() function will give you back the length of the sequence
stored in variable dengueseq, in nucleotides. The length()
function actually gives the number of elements in the input vector
that you pass to it, which in this case in the number of elements
in the vector dengueseq. Since each element of the vector
dengueseq contains one nucleotide of the DEN-1 Dengue virus
sequence, the result for the DEN-1 Dengue virus genome tells us
the length of its genome sequence (ie. 10735 nucleotides long).




Base composition of a DNA sequence

An obvious first analysis of any DNA sequence is to count the
number of occurrences of the four different nucleotides (“A”, “C”,
“G”, and “T”) in the sequence. This can be done using the the
table() function. For example, to find the number of As, Cs, Gs,
and Ts in the DEN-1 Dengue virus sequence (which you have put
into vector variable dengueseq, using the commands above), you
would type:

> table(dengueseq)
dengueseq
  a    c    g    t
3426 2240 2770 2299





This means that the DEN-1 Dengue virus genome sequence has 3426
As, 2240 Cs, 2770 Gs and 2299 Ts.




GC Content of DNA

One of the most fundamental properties of a genome sequence is its
GC content, the fraction of the sequence that consists of Gs and
Cs, ie. the %(G+C).

The GC content can be calculated as the percentage of the bases in
the genome that are Gs or Cs. That is, GC content = (number of Gs +
number of Cs)*100/(genome length). For example, if the genome is
100 bp, and 20 bases are Gs and 21 bases are Cs, then the GC
content is (20 + 21)*100/100 = 41%.

You can easily calculate the GC content based on the number of As,
Gs, Cs, and Ts in the genome sequence. For example, for the
DEN-1 Dengue virus genome sequence, we know from using the
table() function above that the genome contains 3426 As, 2240 Cs,
2770 Gs and 2299 Ts. Therefore, we can calculate the GC content
using the command:

> (2240+2770)*100/(3426+2240+2770+2299)
[1] 46.66977





Alternatively, if you are feeling lazy, you can use the GC()
function in the SeqinR package, which gives the fraction of bases
in the sequence that are Gs or Cs.

> GC(dengueseq)
[1] 0.4666977





The result above means that the fraction of bases in the
DEN-1 Dengue virus genome that are Gs or Cs is 0.4666977. To
convert the fraction to a percentage, we have to multiply by 100,
so the GC content as a percentage is 46.66977%.




DNA words

As well as the frequency of each of the individual nucleotides
(“A”, “G”, “T”, “C”) in a DNA sequence, it is also interesting to
know the frequency of longer DNA “words”. The individual
nucleotides are DNA words that are 1 nucleotide long, but we may
also want to find out the frequency of DNA words that are 2
nucleotides long (ie. “AA”, “AG”, “AC”, “AT”, “CA”, “CG”, “CC”,
“CT”, “GA”, “GG”, “GC”, “GT”, “TA”, “TG”, “TC”, and “TT”), 3
nucleotides long (eg. “AAA”, “AAT”, “ACG”, etc.), 4 nucleotides
long, etc.

To find the number of occurrences of DNA words of a particular
length, we can use the count() function from the R SeqinR package. For example, to find
the number of occurrences of DNA words that are 1 nucleotide long
in the sequence dengueseq, we type:

> count(dengueseq, 1)
  a    c    g    t
 3426 2240 2770 2299





As expected, this gives us the number of occurrences of the
individual nucleotides. To find the number of occurrences of DNA
words that are 2 nucleotides long, we type:

> count(dengueseq, 2)
  aa   ac   ag   at   ca   cc   cg   ct   ga   gc   gg   gt   ta   tc   tg   tt
 1108  720  890  708  901  523  261  555  976  500  787  507  440  497  832  529





Note that by default the count() function includes all overlapping DNA words in
a sequence. Therefore, for example, the sequence “ATG” is considered to contain
two words that are two nucleotides long: “AT” and “TG”.

If you type help(‘count’), you will see that the result (output) of
the function count() is a table object. This means that you can
use double square brackets to extract the values of elements from
the table. For example, to extract the value of the third element
(the number of Gs in the DEN-1 Dengue virus sequence), you can type:

> denguetable <- count(dengueseq,1)
> denguetable[[3]]
 [1] 2770





The command above extracts the third element of the table produced
by count(dengueseq,1), which we have stored in the table variable
denguetable.

Alternatively, you can find the value of the element of the table
in column “g” by typing:

> denguetable[["g"]]
 [1] 2770








Summary

In this practical, you will have learnt to use the following R
functions:


	length() for finding the length of a vector or list

	table() for printing out a table of the number of occurrences of
each type of item in a vector or list.



These functions belong to the standard installation of R.

You have also learnt the following R functions that belong to the
SeqinR package:


	GC() for calculating the GC content for a DNA sequence

	count() for calculating the number of occurrences of DNA words
of a particular length in a DNA sequence






Links and Further Reading

Some links are included here for further reading.

For background reading on DNA sequence statistics, it is
recommended to read Chapter 1 of
Introduction to Computational Genomics: a case studies approach
by Cristianini and Hahn (Cambridge University Press;
www.computational-genomics.net/book/ [http://www.computational-genomics.net/book/]).

For more in-depth information and more examples on using the SeqinR
package for sequence analysis, look at the SeqinR documentation,
http://pbil.univ-lyon1.fr/software/seqinr/doc.php?lang=eng.

There is also a very nice chapter on “Analyzing Sequences”, which
includes examples of using SeqinR for sequence analysis, in the
book Applied statistics for bioinformatics using R by Krijnen
(available online at
cran.r-project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf [http://cran.r-project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf]).

For a more in-depth introduction to R, a good online tutorial is
available on the “Kickstarting R” website,
cran.r-project.org/doc/contrib/Lemon-kickstart [http://cran.r-project.org/doc/contrib/Lemon-kickstart/].

There is another nice (slightly more in-depth) tutorial to R
available on the “Introduction to R” website,
cran.r-project.org/doc/manuals/R-intro.html [http://cran.r-project.org/doc/manuals/R-intro.html].
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Exercises

Answer the following questions, using the R package. For each
question, please record your answer, and what you typed into R to
get this answer.

Model answers to the exercises are given in
Answers to the exercises on DNA Sequence Statistics (1).

Q1. What are the last twenty nucleotides of the Dengue virus genome sequence?


	Q2. What is the length in nucleotides of the genome sequence for the bacterium Mycobacterium leprae strain TN (accession NC_002677)?

	Note: Mycobacterium leprae is a bacterium that is responsible for causing
leprosy [http://apps.who.int/tdr/svc/diseases/leprosy],
which is classified by the WHO as a neglected tropical disease.
As the genome sequence is a DNA sequence, if you are retrieving its sequence via the NCBI website,
you will need to look for it in the NCBI Nucleotide database.

	Q3. How many of each of the four nucleotides A, C, T and G, and any other symbols, are there in the Mycobacterium leprae TN genome sequence?

	Note: other symbols apart from the four nucleotides A/C/T/G may
appear in a sequence. They correspond to positions in the sequence
that are are not clearly one base or another and they are due, for
example, to sequencing uncertainties. or example, the symbol ‘N’
means ‘aNy base’, while ‘R’ means ‘A or G’ (puRine). There is a
table of symbols at
www.bioinformatics.org/sms/iupac.html [http://www.bioinformatics.org/sms/iupac.html].

	Q4. What is the GC content of the Mycobacterium leprae TN genome sequence, when (i) all non-A/C/T/G nucleotides are included, (ii) non-A/C/T/G nucleotides are discarded?

	Hint: look at the help page for the GC() function to find out how
it deals with non-A/C/T/G nucleotides.

	Q5. How many of each of the four nucleotides A, C, T and G are there in the complement of the Mycobacterium leprae TN genome sequence?

	Hint: you will first need to search for a function to calculate the
complement of a sequence. Once you have found out what function to
use, remember to use the help() function to find out what are the
arguments (inputs) and results (outputs) of that function. How does
the function deal with symbols other than the four nucleotides A,
C, T and G?
Are the numbers of As, Cs, Ts, and Gs in the complementary sequence
what you would expect?



Q6. How many occurrences of the DNA words CC, CG and GC occur in the Mycobacterium leprae TN genome sequence?


	Q7. How many occurrences of the DNA words CC, CG and GC occur in the (i) first 1000 and (ii) last 1000 nucleotides of the Mycobacterium leprae TN genome sequence?

	How can you check that the subsequence that you have looked at is
1000 nucleotides long?









          

      

      

    

  

    
      
          
            
  
DNA Sequence Statistics (2)


A little more introduction to R

In the chapter on How to install R,
you learnt about variables in R, such as
scalars, vectors, and lists. You also learnt how to use functions
to carry out operations on variables, for example, using the
log10() function to calculate the log to the base 10 of a scalar
variable x, or using the mean() function to calculate the average
of the values in a vector variable myvector:

> x <- 100
> log10(x)
[1] 2
> myvector <- c(30,16,303,99,11,111)
> mean(myvector)
[1] 95





You also learnt that you can extract an element of a vector by
typing the vector name with the index of that element given in
square brackets. For example, to get the value of the 3rd element
in the vector myvector, we type:

> myvector[3]
[1] 303





A useful function in R is the seq() function, which can be used to
create a sequence of numbers that run from a particular number to
another particular number. For example, if we want to create the
sequence of numbers from 1-100 in steps of 1 (ie. 1, 2, 3, 4, ...
97, 98, 99, 100), we can type:

> seq(1, 100, by = 1)
   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18
 [19]  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
 [37]  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54
 [55]  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72
 [73]  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
 [91]  91  92  93  94  95  96  97  98  99 100





We can change the step size by altering the value of the “by”
argument given to the function seq(). For example, if we want to
create a sequence of numbers from 1-100 in steps of 2 (ie. 1, 3, 5,
7, ... 97, 99), we can type:

> seq(1, 100, by = 2)
 [1]  1  3  5  7  9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
[26] 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99





In R, just as in programming languages such as Python, it is
possible to write a for loop to carry out the same command
several times. For example, if we want to print out the square of
each number between 1 and 10, we can write the following for loop:

> for (i in 1:10) { print (i*i) }
[1] 1
[1] 4
[1] 9
[1] 16
[1] 25
[1] 36
[1] 49
[1] 64
[1] 81
[1] 100





In the for loop above, the variable i is a counter for the
number of cycles through the loop. In the first cycle through the
loop, the value of i is 1, and so i * i =1 is printed out. In
the second cycle through the loop, the value of i is 2, and so
i * i =4 is printed out. In the third cycle through the loop, the
value of i is 3, and so i * i =9 is printed out. The loop
continues until the value of i is 10. In the tenth cycle through
the loop, the value of i is 10, and so i * i =100 is printed
out.

Note that the commands that are to be carried out at each cycle of
the for loop must be enclosed within curly brackets (“{” and
“}”).

You can also give a for loop a vector of numbers containing the
values that you want the counter i to take in subsequent cycles.
For example, you can make a vector avector containing the numbers
2, 9, 100, and 133, and write a for loop to print out the square
of each number in vector avector:

> avector <- c(2, 9, 100, 133)
> for (i in avector) { print (i*i) }
[1] 4
[1] 81
[1] 10000
[1] 17689





How can we use a for loop to print out the square of every second
number between 1 and 10? The answer is to use the seq() function to
tell the for loop to take every second number between 1 and 10:

> for (i in seq(1, 10, by = 2)) { print (i*i) }
[1] 1
[1] 9
[1] 25
[1] 49
[1] 81





In the first cycle of this loop, the value of i is 1, and so
i * i =1 is printed out. In the second cycle through the loop,
the value of i is 3, and so i * i =9 is printed out. The loop
continues until the value of i is 9. In the fifth cycle through
the loop, the value of i is 9, and so i * i =81 is printed
out.

R allows the production of a variety of plots, including
scatterplots, histograms, piecharts, and boxplots. For example, if
you have two vectors of numbers myvector1 and myvector2, you
can plot a scatterplot of the values in myvector1 against the
values in myvector2 using the plot() function. If you want to
label the axes on the plot, you can do this by giving the plot()
function values for its optional arguments xlab and ylab:

> myvector1 <- c(10, 15, 22, 35, 43)
> myvector2 <- c(3, 3.2, 3.9, 4.1, 5.2)
> plot(myvector1, myvector2, xlab="myvector1", ylab="myvector2")





[image: image0]

If you look at the help page for the plot() function, you
will see that there are lots of optional arguments (inputs) that it
can take that. For example, one optional argument is the type
argument, that determines the type of the plot. By default, plot()
will draw a dot at each data point, but if we set type to be “b”,
then it will also draw a line between each subsequent data point:

> plot(myvector1, myvector2, xlab="myvector1", ylab="myvector2", type="b")





[image: image1]

We have been using built-in R functions such as mean(),
length(), print(), plot(), etc. We can also create our own
functions in R to do calculations that you want to carry out very
often on different input data sets. For example, we can create a
function to calculate the value of 20 plus the square of some input
number:

> myfunction <- function(x) { return(20 + (x*x)) }





This function will calculate the square of a number (x), and then
add 20 to that value. The return() statement returns the calculated
value. Once you have typed in this function, the function is then
available for use. For example, we can use the function for
different input numbers (eg. 10, 25):

> myfunction(10)
[1] 120
> myfunction(25)
[1] 645





You can view the code that makes up a function by typing its name
(without any parentheses). For example, we can try this by typing
“myfunction”:

> myfunction
function(x) { return(20 + (x*x)) }





When you are typing R, if you want to, you can write comments by
writing the comment text after the “#” sign. This can be useful if
you want to write some R commands that other people need to read
and understand. R will ignore the comments when it is executing the
commands. For example, you may want to write a comment to explain
what the function log10() does:

> x <- 100
> log10(x) # Finds the log to the base 10 of variable x.
[1] 2








Reading sequence data with SeqinR

In the
previous chapter
you learnt how to use to search for and download the sequence data
for a given NCBI accession from the NCBI Sequence Database,
either
via the NCBI website
or using the getncbiseq() function in R.

For example, you could have downloaded the sequence data for a the
DEN-1 Dengue virus sequence (NCBI accession NC_001477),
and stored it on a file on your computer (eg. “den1.fasta”).

Once you have downloaded the sequence data for a particular NCBI
accession, and stored it on a file on your computer, you can then
read it into R by using read.fasta function from the SeqinR R
package. For example, if you have stored the DEN-1 Dengue virus
sequence in a file “den1.fasta”, you can type:

> library("seqinr")                           # Load the SeqinR package.
> dengue <- read.fasta(file = "den1.fasta")   # Read in the file "den1.fasta".
> dengueseq <- dengue[[1]]                    # Put the sequence in a vector called "dengueseq".





Once you have retrieved a sequence from the NCBI Sequence Database
and stored it in a vector variable such as dengueseq in the
example above, it is possible to extract subsequence of the
sequence by type the name of the vector (eg. dengueseq) followed
by the square brackets containing the indices for those
nucleotides. For example, to obtain nucleotides 452-535 of the
DEN-1 Dengue virus genome, we can type:

> dengueseq[452:535]
 [1] "c" "g" "a" "g" "g" "g" "g" "g" "a" "g" "a" "g" "c" "c" "g" "c" "a" "c" "a"
[20] "t" "g" "a" "t" "a" "g" "t" "t" "a" "g" "c" "a" "a" "g" "c" "a" "g" "g" "a"
[39] "a" "a" "g" "a" "g" "g" "a" "a" "a" "a" "t" "c" "a" "c" "t" "t" "t" "t" "g"
[58] "t" "t" "t" "a" "a" "g" "a" "c" "c" "t" "c" "t" "g" "c" "a" "g" "g" "t" "g"
[77] "t" "c" "a" "a" "c" "a" "t" "g"








Local variation in GC content

In the previous chapter,
you learnt that to find out the GC
content of a genome sequence (percentage of nucleotides in a genome
sequence that are Gs or Cs), you can use the GC() function in the
SeqinR package. For example, to find the GC content of the
DEN-1 Dengue virus sequence that we have stored in the vector
dengueseq, we can type:

> GC(dengueseq)
[1] 0.4666977





The output of the GC() is the fraction of nucleotides in a sequence
that are Gs or Cs, so to convert it to a percentage we need to
multiply by 100. Thus, the GC content of the DEN-1 Dengue virus
genome is about 0.467 or 46.7%.

Although the GC content of the whole DEN-1 Dengue virus genome
sequence is about 46.7%, there is probably local variation in GC
content within the genome. That is, some regions of the genome
sequence may have GC contents quite a bit higher than 46.7%, while
some regions of the genome sequence may have GC contents that are
quite a big lower than 46.7%. Local fluctuations in GC content
within the genome sequence can provide different interesting
information, for example, they may reveal cases of horizontal
transfer or reveal biases in mutation.

If a chunk of DNA has moved by horizontal transfer from the genome
of a species with low GC content to a species with high GC content,
the chunk of horizontally transferred DNA could be detected as a
region of unusually low GC content in the high-GC recipient
genome.

On the other hand, a region unusually low GC content in an
otherwise high-GC content genome could also arise due to biases in
mutation in that region of the genome, for example, if mutations
from Gs/Cs to Ts/As are more common for some reason in that region
of the genome than in the rest of the genome.




A sliding window analysis of GC content

In order to study local variation in GC content within a genome
sequence, we could calculate the GC content for small chunks of the
genome sequence. The DEN-1 Dengue virus genome sequence is 10735
nucleotides long. To study variation in GC content within the
genome sequence, we could calculate the GC content of chunks of the
DEN-1 Dengue virus genome, for example, for each 2000-nucleotide chunk of the
genome sequence:

> GC(dengueseq[1:2000])      # Calculate the GC content of nucleotides 1-2000 of the Dengue genome
[1] 0.465
> GC(dengueseq[2001:4000])   # Calculate the GC content of nucleotides 2001-4000 of the Dengue genome
[1] 0.4525
> GC(dengueseq[4001:6000])   # Calculate the GC content of nucleotides 4001-6000 of the Dengue genome
[1] 0.4705
> GC(dengueseq[6001:8000])   # Calculate the GC content of nucleotides 6001-8000 of the Dengue genome
[1] 0.479
> GC(dengueseq[8001:10000])  # Calculate the GC content of nucleotides 8001-10000 of the Dengue genome
[1] 0.4545
> GC(dengueseq[10001:10735]) # Calculate the GC content of nucleotides 10001-10735 of the Dengue genome
[1] 0.4993197





From the output of the above calculations, we see that the region
of the DEN-1 Dengue virus genome from nucleotides 1-2000 has a GC content of
46.5%, while the region of the Dengue genome from
nucleotides 2001-4000 has a GC content of about 45.3%. Thus,
there seems to be some local variation in GC content within
the Dengue genome sequence.

Instead of typing in the commands above to tell R to calculate the
GC content for each 2000-nucleotide chunk of the DEN-1 Dengue
genome, we can use a for loop to carry out the same
calculations, but by typing far fewer commands. That is, we can use
a for loop to take each 2000-nucleotide chunk of the
DEN-1 Dengue virus genome, and to calculate the GC content of
each 2000-nucleotide chunk. Below we will explain the following
for loop that has been written for this purpose:

> starts <- seq(1, length(dengueseq)-2000, by = 2000)
> starts
[1]    1 2001 4001 6001 8001
> n <- length(starts)    # Find the length of the vector "starts"
> for (i in 1:n) {
        chunk <- dengueseq[starts[i]:(starts[i]+1999)]
        chunkGC <- GC(chunk)
        print (chunkGC)
     }
[1] 0.465
[1] 0.4525
[1] 0.4705
[1] 0.479
[1] 0.4545





The command “starts <- seq(1, length(dengueseq)-2000, by = 2000)”
stores the result of the seq() command in the vector starts,
which contains the values 1, 2001, 4001, 6001, and 8001.

We set the variable n to be equal to the number of elements in
the vector starts, so it will be 5 here, since the vector
starts contains the five elements 1, 2001, 4001, 6001 and 8001. The
line “for (i in 1:n)” means that the counter i will take values of
1-5 in subsequent cycles of the for loop. The for loop above is
spread over several lines. However, R will not execute the commands
within the for loop until you have typed the final “}” at the end
of the for loop and pressed “Return”.

Each of the three commands within the for loop are carried out in
each cycle of the loop. In the first cycle of the loop, i is 1,
the vector variable chunk is used to store the region from
nucleotides 1-2000 of the Dengue virus sequence, the GC content of that
region is calculated and stored in the variable chunkGC, and the
value of chunkGC is printed out.

In the second cycle of the loop, i is 2, the vector variable
chunk is used to store the region from nucleotides 2001-4000 of
the Dengue virus sequence, the GC content of that region is calculated
and stored in the variable chunkGC, and the value of chunkGC is
printed out. The loop continues until the value of i is 5. In the
fifth cycle through the loop, the value of i is 5, and so the GC
content of the region from nucleotides 8001-10000 is printed out.

Note that we stop the loop when we are looking at the region from
nucleotides 8001-10000, instead of continuing to another cycle of
the loop where the region under examiniation would be from
nucleotides 10001-12000. The reason for this is because the length
of the Dengue virus genome sequence is just 10735 nucleotides, so there
is not a full 2000-nucleotide region from nucleotide 10001 to the
end of the sequence at nucleotide 10735.

The above analysis of local variation in GC content is what is
known as a sliding window analysis of GC content. By calculating
the GC content in each 2000-nucleotide chunk of the Dengue virus
genome, you are effectively sliding a 2000-nucleotide
window along the DNA sequence from start to end, and calculating
the GC content in each non-overlapping window (chunk of DNA).

Note that this sliding window analysis of GC content is a slightly
simplified version of the method usually carried out by
bioinformaticians. In this simplified version, we have calculated
the GC content in non-overlapping windows along a DNA sequence.
However, it is more usual to calculate GC content in overlapping
windows along a sequence, although that makes the code slightly
more complicated.




A sliding window plot of GC content

It is common to use the data generated from a sliding window
analysis to create a sliding window plot of GC content. To create
a sliding window plot of GC content, you plot the local GC content
in each window of the genome, versus the nucleotide position of the
start of each window. We can create a sliding window plot of GC
content by typing:

> starts <- seq(1, length(dengueseq)-2000, by = 2000)
> n <- length(starts)    # Find the length of the vector "starts"
> chunkGCs <- numeric(n) # Make a vector of the same length as vector "starts", but just containing zeroes
> for (i in 1:n) {
        chunk <- dengueseq[starts[i]:(starts[i]+1999)]
        chunkGC <- GC(chunk)
        print(chunkGC)
        chunkGCs[i] <- chunkGC
     }
> plot(starts,chunkGCs,type="b",xlab="Nucleotide start position",ylab="GC content")
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In the code above, the line “chunkGCs <- numeric(n)” makes a
new vector chunkGCs which has the same number of elements as the
vector starts (5 elements here). This vector chunkGCs is then
used within the for loop for storing the GC content of each chunk
of DNA.

After the loop, the vector starts can be plotted against the
vector chunkGCs using the plot() function, to get a plot of GC
content against nucleotide position in the genome sequence. This is
a sliding window plot of GC content.

You may want to use the code above to create sliding window plots
of GC content of different species’ genomes, using different
windowsizes. Therefore, it makes sense to write a function to do
the sliding window plot, that can take the windowsize that the user
wants to use and the sequence that the user wants to study as
arguments (inputs):

> slidingwindowplot <- function(windowsize, inputseq)
{
   starts <- seq(1, length(inputseq)-windowsize, by = windowsize)
   n <- length(starts)    # Find the length of the vector "starts"
   chunkGCs <- numeric(n) # Make a vector of the same length as vector "starts", but just containing zeroes
   for (i in 1:n) {
        chunk <- inputseq[starts[i]:(starts[i]+windowsize-1)]
        chunkGC <- GC(chunk)
        print(chunkGC)
        chunkGCs[i] <- chunkGC
   }
   plot(starts,chunkGCs,type="b",xlab="Nucleotide start position",ylab="GC content")
}





This function will make a sliding window plot of GC content for a
particular input sequence inputseq specified by the user, using a
particular windowsize windowsize specified by the user. Once you
have typed in this function once, you can use it again and again to
make sliding window plots of GC contents for different input DNA
sequences, with different windowsizes. For example, you could
create two different sliding window plots of the DEN-1 Dengue
virus genome sequence, using windowsizes of 3000 and 300
nucleotides, respectively:

> slidingwindowplot(3000, dengueseq)
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> slidingwindowplot(300, dengueseq)
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Over-represented and under-represented DNA words

In the previous chapter, you learnt that the count() function in
the SeqinR R package can calculate the frequency of all DNA words
of a certain length in a DNA sequence. For example, if you want to
know the frequency of all DNA words that are 2 nucleotides long in
the Dengue virus genome sequence, you can type:

> count(dengueseq, 2)
 aa   ac   ag   at   ca   cc   cg   ct   ga   gc   gg   gt   ta   tc   tg   tt
1108  720  890  708  901  523  261  555  976  500  787  507  440  497  832  529





It is interesting to identify DNA words that are two nucleotides
long (“dinucleotides”, ie. “AT”, “AC”, etc.) that are
over-represented or under-represented in a DNA sequence. If a
particular DNA word is over-represented in a sequence, it means
that it occurs many more times in the sequence than you would have
expected by chance. Similarly, if a particular DNA word is
under-represented in a sequence, it means it occurs far fewer
times in the sequence than you would have expected.

A statistic called ρ (Rho) is used to measure how over- or
under-represented a particular DNA word is. For a 2-nucleotide
(dinucleotide) DNA word ρ is calculated as:

ρ(xy) = fxy/(fx*fy),

where fxy and fx are the frequencies of the DNA
words xy and x in the DNA sequence under study. For example,
the value of ρ for the DNA word “TA” can be calculated as:
ρ(TA) = fTA/(fT* fA),
where fTA, fT and fA are the
frequencies of the DNA words “TA”, “T” and “A” in the DNA
sequence.

The idea behind the ρ statistic is that, if a DNA sequence had a
frequency fx of a 1-nucleotide DNA word x, and a
frequency fy of a 1-nucleotide DNA word y, then we
expect the frequency of the 2-nucleotide DNA word xy to be
fx* fy. That is, the frequencies of the
2-nucleotide DNA words in a sequence are expected to be equal the
products of the specific frequencies of the two nucleotides that
compose them. If this were true, then ρ would be equal to 1. If
we find that ρ is much greater than 1 for a particular
2-nucleotide word in a sequence, it indicates that that
2-nucleotide word is much more common in that sequence than
expected (ie. it is over-represented).

For example, say that your input sequence has only 5% Ts (ie.
fT = 0.05). In a random DNA sequence with 5% Ts, you
would expect to see the word “TT” very infrequently. In fact, we
would only expect 0.05 * 0.05=0.0025 (0.25%) of 2-nucleotide words
to be TTs (ie. we expect fTT =
fT*  fT). This is because Ts are rare, so
they are expected to be adjacent to each other very infrequently if
the few Ts are randomly scattered throughout the DNA. Therefore, if
you see lots of TT 2-nucleotide words in your real input sequence
(eg. fTT = 0.3, so ρ = 0.3/0.0025 = 120), you would
suspect that natural selection has acted to increase the number of
occurrences of the TT word in the sequence (presumably because it
has some beneficial biological function).

To find over-represented and under-represented DNA words that are 2
nucleotides long in the DEN-1 Dengue virus sequence, we can
calculate the ρ statistic for each 2-nucleotide word in the
sequence. For example, given the number of occurrences of the
individual nucleotides A, C, G and T in the Dengue sequence, and
the number of occurrences of the DNA word GC in the sequence (500,
from above), we can calculate the value of ρ for the 2-nucleotide
DNA word “GC”, using the formula ρ(GC) =
fGC/(fG * fC), where
fGC, fG and fC are the
frequencies of the DNA words “GC”, “G” and “C” in the DNA
sequence:

> count(dengueseq, 1) # Get the number of occurrences of 1-nucleotide DNA words
    a     c     g     t
   3426 2240 2770 2299
> 2770/(3426+2240+2770+2299) # Get fG
[1] 0.2580345
> 2240/(3426+2240+2770+2299) # Get fC
[1] 0.2086633
> count(dengueseq, 2) # Get the number of occurrences of 2-nucleotide DNA words
  aa   ac   ag   at   ca   cc   cg   ct   ga   gc   gg   gt   ta   tc   tg   tt
 1108  720  890  708  901  523  261  555  976  500  787  507  440  497  832  529
> 500/(1108+720+890+708+901+523+261+555+976+500+787+507+440+497+832+529) # Get fGC
[1] 0.04658096
> 0.04658096/(0.2580345*0.2086633) # Get rho(GC)
[1] 0.8651364





We calculate a value of ρ(GC) of approximately 0.865. This means
that the DNA word “GC” is about 0.865 times as common in the
DEN-1 Dengue virus sequence than expected. That is, it seems to be slightly under-represented.

Note that if the ratio of the observed to expected frequency of a
particular DNA word is very low or very high, then we would suspect
that there is a statistical under-representation or
over-representation of that DNA word. However, to be sure that this
over- or under-representation is statistically significant, we
would need to do a statistical test. We will not deal with the
topic of how to carry out the statistical test here.




Summary

In this chapter, you will have learnt to use the following R
functions:


	seq() for creating a sequence of numbers

	print() for printing out the value of a variable

	plot() for making a plot (eg. a scatterplot)

	numeric() for making a numeric vector of a particular length

	function() for making a function



All of these functions belong to the standard installation of R.
You also learnt how to use for loops to carry out the same
operation again and again, each time on different inputs.




Links and Further Reading

Some links are included here for further reading.

For background reading on DNA sequence statistics, it is
recommended to read Chapter 1 of
Introduction to Computational Genomics: a case studies approach
by Cristianini and Hahn (Cambridge University Press;
www.computational-genomics.net/book/ [http://www.computational-genomics.net/book/]).

For more in-depth information and more examples on using the SeqinR
package for sequence analysis, look at the SeqinR documentation,
http://pbil.univ-lyon1.fr/software/seqinr/doc.php?lang=eng.

There is also a very nice chapter on “Analyzing Sequences”, which
includes examples of using SeqinR for sequence analysis, in the
book Applied statistics for bioinformatics using R by Krijnen
(available online at
cran.r-project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf [http://cran.r-project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf]).

For a more in-depth introduction to R, a good online tutorial is
available on the “Kickstarting R” website,
cran.r-project.org/doc/contrib/Lemon-kickstart [http://cran.r-project.org/doc/contrib/Lemon-kickstart/].

There is another nice (slightly more in-depth) tutorial to R
available on the “Introduction to R” website,
cran.r-project.org/doc/manuals/R-intro.html [http://cran.r-project.org/doc/manuals/R-intro.html].
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Exercises

Answer the following questions, using the R package. For each
question, please record your answer, and what you typed into R to
get this answer.

Model answers to the exercises are given in
Answers to the exercises on DNA Sequence Statistics (2).


	Q1. Draw a sliding window plot of GC content in the DEN-1 Dengue virus genome, using a window size of 200 nucleotides. Do you see any regions of unusual DNA content in the genome (eg. a high peak or low trough)?

	Make a sketch of each plot that you draw.
At what position (in base-pairs) in the genome is there the largest
change in local GC content (approximate position is fine here)?
Compare the sliding window plots of GC content created using window
sizes of 200 and 2000 nucleotides. How does window
size affect your ability to detect differences within
the Dengue virus genome?

	Q2. Draw a sliding window plot of GC content in the genome sequence for the bacterium Mycobacterium leprae strain TN (accession NC_002677) using a window size of 20000 nucleotides. Do you see any regions of unusual DNA content in the genome (eg. a high peak or low trough)?

	Make a sketch of each plot that you draw.
Write down the approximate nucleotide position of the highest peak or lowest trough that you see.
Why do you think a window size of 20000 nucleotides was chosen?
What do you see if you use a much smaller windowsize (eg. 200 nucleotides) or a much larger windowsize (eg. 200,000 nucleotides)?

	Q3. Write a function to calculate the AT content of a DNA sequence (ie. the fraction of the nucleotides in the sequence that are As or Ts). What is the AT content of the Mycobacterium leprae TN genome?

	Hint: use the function count() to make a table containing the
number of As, Gs, Ts and Cs in the sequence. Remember that function
count() produces a table object, and you can access the elements of
a table object using double square brackets.
Do you notice a relationship between the AT content of the
Mycobacterium leprae TN genome, and its GC content?

	Q4. Write a function to draw a sliding window plot of AT content. Use it to make a sliding window plot of AT content along the Mycobacterium leprae TN genome, using a windowsize of 20000 nucleotides. Do you notice any relationship between the sliding window plot of GC content along the Mycobacterium leprae genome, and the sliding window plot of AT content?

	Make a sketch of the plot that you draw.

	Q5. Is the 3-nucleotide word GAC GC over-represented or under-represented in the Mycobacterium leprae TN genome sequence?

	What is the frequency of this word in the sequence?
What is the expected frequency of this word in the sequence?
What is the ρ (Rho) value for this word?
How would you figure out whether there is already an R function to calculate ρ (Rho)? Is there one that you could use?









          

      

      

    

  

    
      
          
            
  
Sequence Databases


The NCBI Sequence Database

All published genome sequences are available over the internet, as
it is a requirement of every scientific journal that any published
DNA or RNA or protein sequence must be deposited in a public
database. The main resources for storing and distributing sequence
data are three large databases: the NCBI database
(www.ncbi.nlm.nih.gov/ [http://www.ncbi.nlm.nih.gov/]), the
European Molecular Biology Laboratory (EMBL) database
(www.ebi.ac.uk/embl/ [http://www.ebi.ac.uk/embl/], and the DNA
Database of Japan (DDBJ) database
(www.ddbj.nig.ac.jp/ [http://www.ddbj.nig.ac.jp/]). These
databases collect all publicly available DNA, RNA and protein
sequence data and make it available for free. They exchange data
nightly, so contain essentially the same data.

In this chapter we will discuss the NCBI database. Note however
that it contains essentially the same data as in the EMBL/DDBJ
databases.

Sequences in the NCBI Sequence Database (or EMBL/DDBJ) are
identified by an accession number. This is a unique number that is
only associated with one sequence. For example, the accession
number NC_001477 is for the DEN-1 Dengue virus genome
sequence. The accession number is what identifies the sequence. It
is reported in scientific papers describing that sequence.

As well as the sequence itself, for each sequence the NCBI database
(or EMBL/DDBJ databases) also stores some additional annotation
data, such as the name of the species it comes from, references to
publications describing that sequence, etc. Some of this annotation
data was added by the person who sequenced a sequence and submitted
it to the NCBI database, while some may have been added later by a
human curator working for NCBI.

The NCBI database contains several sub-databases, the most important of which are:


	the NCBI Nucleotide database: contains DNA and RNA sequences

	the NCBI Protein database: contains protein sequences

	EST: contains ESTs (expressed sequence tags), which are short sequences derived from mRNAs

	the NCBI Genome database: contains DNA sequences for whole genomes

	PubMed: contains data on scientific publications






Searching for an accession number in the NCBI database

In the DNA Sequence Statistics chapter (1),
you learnt how to obtain a FASTA file containing the DNA sequence
corresponding to a particular accession number, eg. accession
number NC_001477 (the DEN-1 Dengue virus genome sequence), either
via the NCBI website
or using the getncbiseq() function in R.

As explained in the DNA Sequence Statistics (1) chapter,
the FASTA format is a file format commonly used to store sequence information. The first line starts
with the character ‘>’ followed by a name and/or description for
the sequence. Subsequent lines contain the sequence itself.

>mysequence1
ACATGAGACAGACAGACCCCCAGAGACAGACCCCTAGACACAGAGAGAG
TATGCAGGACAGGGTTTTTGCCCAGGGTGGCAGTATG





A FASTA file can contain more than one sequence. If a FASTA file
contains many sequences, then for each sequence it will have a
header line starting with ‘>’ followed by the sequence itself.

>mysequence1
ACATGAGACAGACAGACCCCCAGAGACAGACCCCTAGACACAGAGAGAG
TATGCAGGACAGGGTTTTTGCCCAGGGTGGCAGTATG
>mysequence2
AGGATTGAGGTATGGGTATGTTCCCGATTGAGTAGCCAGTATGAGCCAG
AGTTTTTTACAAGTATTTTTCCCAGTAGCCAGAGAGAGAGTCACCCAGT
ACAGAGAGC








NCBI Sequence Format (NCBI Format)

As mentioned above, for each sequence the NCBI database stores some
extra information such as the species that it came from,
publications describing the sequence, etc. This information is
stored in the NCBI entry or NCBI record for the sequence. The NCBI
entry for a sequence can be viewed by searching the NCBI database
for the accession number for that sequence. The NCBI entries for
sequences are stored in a particular format, known as NCBI format.

To view the NCBI entry for the DEN-1 Dengue virus (which has
accession NC_001477), follow these steps:


	Go to the NCBI website
(www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov]).

	Search for the accession number.

	On the results page, if your sequence corresponds to a
nucleotide (DNA or RNA) sequence, you should see a hit in the
Nucleotide database, and you should click on the word ‘Nucleotide’
to view the NCBI entry for the hit. Likewise, if your sequence
corresponds to a protein sequence, you should see a hit in the
Protein database, and you should click on the word ‘Protein’ to
view the NCBI entry for the hit.

	After you click on ‘Nucleotide’ or ‘Protein’ in the previous
step, the NCBI entry for the accession will appear.



For example, the NCBI entry for the DEN-1 Dengue virus genome sequence
(NCBI accession NC_001477) looks like this:

[image: image2]

The NCBI entry for an accession contains a lot of information about
the sequence, such as papers describing it, features in the
sequence, etc. The ‘DEFINITION’ field gives a short description for
the sequence. The ‘ORGANISM’ field in the NCBI entry identifies the
species that the sequence came from. The ‘REFERENCE’ field contains
scientific publications describing the sequence. The ‘FEATURES’
field contains information about the location of features of
interest inside the sequence, such as regulatory sequences or genes
that lie inside the sequence. The ‘ORIGIN’ field gives the
sequence itself.




RefSeq

When carrying out searches of the NCBI database, it is important to
bear in mind that the database may contain redundant sequences for
the same gene that were sequenced by different laboratories (because many different labs have sequenced
the gene, and submitted their sequences to the NCBI database).

There are also many different types of nucleotide sequences and
protein sequences in the NCBI database. With respect to nucleotide
sequences, some many be entire genomic DNA sequences, some may be
mRNAs, and some may be lower quality sequences such as expressed
sequence tags (ESTs, which are derived from parts of mRNAs), or DNA
sequences of contigs from genome projects.

Furthermore, some sequences may be manually curated so that the associated entries
contain extra information, but the majority of sequences are
uncurated.

As mentioned above, the NCBI database often contains redundant
information for a gene, contains sequences of varying quality, and contains
both uncurated and curated data.

As a result, NCBI has made a special database called RefSeq (reference sequence database), which is a
subset of the NCBI database. The data in RefSeq is manually
curated, is high quality sequence data, and is non-redundant; this means
that each gene (or splice-form of a gene, in the case of eukaryotes),
protein, or genome sequence is only represented once.

The data in RefSeq is curated and is of much higher quality than the rest of the NCBI Sequence
Database. However, unfortunately, because of the high level of
manual curation required, RefSeq does not cover all species, and is
not comprehensive for the species that are covered so far.

You can easily tell that a sequence comes from RefSeq because its
accession number starts with particular sequence of letters. That
is, accessions of RefSeq sequences corresponding to protein records usually start with
‘NP_’, and accessions of RefSeq curated complete genome sequences usually start with
‘NC_’ or ‘NS_’.




Querying the NCBI Database

You may need to interrogate the NCBI Database
to find particular sequences or a set of sequences matching given
criteria, such as:


	The sequence with accession NC_001477

	The sequences published in Nature 460:352-358

	All sequences from Chlamydia trachomatis

	Sequences submitted by Matthew Berriman

	Flagellin or fibrinogen sequences

	The glutamine synthetase gene from Mycobacteriuma leprae

	The upstream control region of the Mycobacterium leprae dnaA gene

	The sequence of the Mycobacterium leprae DnaA protein

	The genome sequence of Trypanosoma cruzi

	All human nucleotide sequences associated with malaria



There are two main ways that you can query the NCBI database to find these
sets of sequences. The first possibility is to carry out searches on the
NCBI website [http://www.ncbi.nlm.nih.gov].
The second possiblity is to carry out searches from R.

Below, we will explain how to use both methods to carry out
queries on the NCBI database. In general, the two methods should give the
same result, but in some cases they do not, for various reasons, as shall be explained below.




Querying the NCBI Database via the NCBI Website

If you are carrying out searches on the NCBI website [http://www.ncbi.nlm.nih.gov],
to narrow down your searches to specific types of sequences or to specific organisms,
you will need to use “search tags”.

For example, the search tags “[PROP]” and “[ORGN]”
let you restrict your search to a specific subset of the
NCBI Sequence Database, or to sequences from a particular taxon,
respectively. Here is a list of useful search tags, which we will explain how to use
below:








	Search tag
	Example
	Restricts your search to sequences:




	[AC]
	NC_001477[AC]
	With a particular accession number


	[ORGN]
	Fungi[ORGN]
	From a particular organism or taxon


	[PROP]
	biomol_mRNA[PROP]
	Of a specific type (eg. mRNA) or from a specific database (eg. RefSeq)


	[JOUR]
	Nature[JOUR]
	Described in a paper published in a particular journal


	[VOL]
	531[VOL]
	Described in a paper published in a particular journal volume


	[PAGE]
	27[PAGE]
	Described in a paper with a particular start-page in a journal


	[AU]
	“Smith J”[AU]
	Described in a paper, or submitted to NCBI, by a particular author





To carry out searches of the NCBI database, you first need to go to the NCBI website [http://www.ncbi.nlm.nih.gov],
and type your search query into the search box at the top. For example, to search for all sequences
from Fungi, you would type “Fungi[ORGN]” into the search box on the NCBI website.

You can combine the search tags above by using “AND”, to make more complex searches. For example, to
find all mRNA sequences from Fungi, you could type “Fungi[ORGN] AND biomol_mRNA[PROP]” in the search
box on the NCBI website.

Likewise, you can also combine search tags by using “OR”, for example, to search for all mRNA sequences
from Fungi or Bacteria, you would type “(Fungi[ORGN] OR Bacteria[ORGN]) AND biomol_mRNA[PROP]” in the search
box. Note that you need to put brackets around “Fungi[ORGN] OR Bacteria[ORGN]” to specify that the word “OR”
refers to these two search tags.

Here are some examples of searches, some of them made by combining search terms using “AND”:







	Typed in the search box
	Searches for sequences:




	NC_001477[AC]
	With accession number NC_001477


	Nature[JOUR] AND 460[VOL] AND 352[PAGE]
	Published in Nature 460:352-358


	“Chlamydia trachomatis”[ORGN]
	From the bacterium Chlamydia trachomatis


	“Berriman M”[AU]
	Published in a paper, or submitted to NCBI, by M. Berriman


	flagellin OR fibrinogen
	Which contain the word ‘flagellin’ or ‘fibrinogen’ in their NCBI record


	“Mycobacterium leprae”[ORGN] AND dnaA
	Which are from M. leprae, and contain “dnaA” in their NCBI record


	“Homo sapiens”[ORGN] AND “colon cancer”
	Which are from human, and contain “colon cancer” in their NCBI record


	“Homo sapiens”[ORGN] AND malaria
	Which are from human, and contain “malaria” in their NCBI record


	“Homo sapiens”[ORGN] AND biomol_mrna[PROP]
	Which are mRNA sequences from human


	“Bacteria”[ORGN] AND srcdb_refseq[PROP]
	Which are RefSeq sequences from Bacteria


	“colon cancer” AND srcdb_refseq[PROP]
	From RefSeq, which contain “colon cancer” in their NCBI record





Note that if you are searching for a phrase such as “colon cancer” or “Chlamydia trachomatis, you need to put the phrase
in inverted commas when typing it into the search box. This is because if you type the phrase in the search box without using inverted
commas, the search will be for NCBI records that contain either of the two words ‘colon’ or ‘cancer’ (or either of the
two words ‘Chlamydia’ or ‘trachomatis’), not necessarily both words.

As mentioned above, the NCBI database contains several sub-databases, including the NCBI Nucleotide database and the
NCBI Protein database. If you go to the NCBI website [http://www.ncbi.nlm.nih.gov], and type one of the search
queries above in the search box at the top of the page, the results page will tell you how many matching NCBI records
were found in each of the NCBI sub-databases.

For example, if you search for “Chlamydia trachomatis[ORGN]”, you will get matches to proteins from C. trachomatis in
the NCBI Protein database, matches to DNA and RNA sequences from C. trachomatis in the NCBI Nucleotide database,
matches to whole genome sequences for C. trachomatis strains in the NCBI Genome database, and so on:

[image: image5]

Alternatively, if you know in advance that you want to search a particular sub-database, for example, the NCBI Protein
database, when you go to the NCBI website [http://www.ncbi.nlm.nih.gov], you can select that sub-database from
the drop-down list above the search box, so that you will search that sub-database:

[image: image6]


Example: finding the sequences published in Nature 460:352-358

For example, if you want to find sequences
published in Nature 460:352-358, you can use the “[JOUR]”, “[VOL]” and “[PAGE]” search terms. That is, you would
go to the NCBI website [http://www.ncbi.nlm.nih.gov] and type in the search
box on the top: “Nature”[JOUR] AND 460[VOL] AND 352[PAGE], where [JOUR] specifies the journal name,
[VOL] the volume of the journal the paper is in, and [PAGE] the page number.

[image: image3]

This should bring up a results page with “50890” beside the word “Nucleotide”, and “1” beside the word
“Genome”, and “25701” beside the word “Protein”, indicating that there were 50890 hits to sequence records in the Nucleotide database,
which contains DNA and RNA sequences, and 1 hit to the Genome database, which contains genome sequences, and 25701
hits to the Protein database, which contains protein sequences:

[image: image4]

If you click on the word “Nucleotide”, it will bring up a webpage with a list of links to the NCBI sequence
records for those 50890 hits. The 50890 hits are all contigs from the schistosome worm Schistosoma mansoni.

Likewise, if you click on the word “Protein”, it will bring up a webpage with a list of links to the NCBI
sequence records for the 25701 hits, and you will see that the hits are all predicted proteins for Schistosoma
mansoni.

If you click on the word “Genome”, it will bring you to the NCBI record for the Schistosoma mansoni genome
sequence, which has NCBI accession NS_00200. Note that the accession starts with “NS_”, which indicates that
it is a RefSeq accession.

Therefore, in Nature volume 460, page 352, the Schistosoma mansoni genome sequence was published, along
with all the DNA sequence contigs that were sequenced for the genome project, and all the predicted proteins
for the gene predictions made in the genome sequence. You can view the original paper on the Nature website
at http://www.nature.com/nature/journal/v460/n7253/abs/nature08160.html.

Note: Schistmosoma mansoni is a parasitic worm that is responsible for causing
schistosomiasis [http://apps.who.int/tdr/svc/diseases/schistosomiasis],
which is classified by the WHO as a neglected tropical disease.






Querying the NCBI Database via R

Instead of carrying out searches of the NCBI database on the NCBI website, you can
carry out searches directly from R by using the SeqinR R package.

It is possible to use the SeqinR R package to retrieve sequences from these databases.
The SeqinR package was written by the group that created the ACNUC database in Lyon, France
(http://pbil.univ-lyon1.fr/databases/acnuc/acnuc.html).
The ACNUC database is a database that contains most of the data from the NCBI Sequence Database,
as well as data from other sequence databases such as UniProt and Ensembl.

An advantage of the ACNUC database is that it brings together data from various different sources, and makes
it easy to search, for example, by using the SeqinR R package.

As will be explained below, the ACNUC database is organised into various different ACNUC (sub)-databases,
which contain different parts of the NCBI database, and when you want to search the NCBI database
via R, you will need to specify which ACNUC sub-database the NCBI data that you want to query is stored in.

To obtain a full list of the ACNUC sub-databases that you can access using SeqinR, you
can use the “choosebank()” function from SeqinR:

> library("seqinr") # Load the SeqinR R package
> choosebank()      # List all the sub-databases in ACNUC
  [1] "genbank"       "embl"          "emblwgs"       "swissprot"
  [5] "ensembl"       "hogenom"       "hogenomdna"    "hovergendna"
  [9] "hovergen"      "hogenom4"      "hogenom4dna"   "homolens"
  [13] "homolensdna"   "hobacnucl"     "hobacprot"     "phever2"
  [17] "phever2dna"    "refseq"        "nrsub"         "greviews"
  [21] "bacterial"     "protozoan"     "ensbacteria"   "ensprotists"
  [25] "ensfungi"      "ensmetazoa"    "ensplants"     "mito"
  [29] "polymorphix"   "emglib"        "taxobacgen"    "refseqViruses"





Alas, the ACNUC sub-databases do not have a one-to-one correspondence with the NCBI sub-databases (the
NCBI Protein database, NCBI EST database, NCBI Genome database, etc.)!

Three of the most important sub-databases in ACNUC which can be searched from R are:


	“genbank”: this contains DNA and RNA sequences from the NCBI Sequence Database, except for certain
classes of sequences (eg. draft genome sequence data from genome sequencing projects)

	“refseq”: this contains DNA and RNA sequences from Refseq,
the curated part of the NCBI Sequence Database

	“refseqViruses”: this contains DNA, RNA and proteins sequences from viruses from RefSeq



You can find more information about what each of these ACNUC databases contains by
looking at the ACNUC website [http://pbil.univ-lyon1.fr/databases/acnuc/acnuc.html].

You can carry out complex queries using the “query()” function from
the SeqinR package. If you look at the help page for the query() function (by
typing “help(query)”, you will see that it allows you to specify criteria that you
require the sequences to fulfill.

For example, to search for a sequence with a particular NCBI accession, you can use the “AC=” argument in “query()”.
The “query()” function will then search for sequences in the NCBI Sequence Database that match your criteria.

Just as you can use “AC=” to specify an accession in a search, you can specify that you want to find
sequences whose NCBI records contain a certain keywords by using “K=” as an argument (input) to the
“query()” function. Likewise you can limit a search to either DNA or mRNA sequences by using the “M=”
argument for the “query()” function. Here are some more possible arguments you can use in the “query()” function:








	Argument
	Example
	Restricts your search to sequences:




	“AC=”
	“AC=NC_001477”
	With a particular accession number


	“SP=”
	“SP=Chlamydia”
	From a particular organism or taxon


	“M=”
	“M=mRNA”
	Of a specific type (eg. mRNA)


	“J=”
	“J=Nature”
	Described in a paper published in a particular journal


	“R=”
	“R=Nature/460/352”
	Described in a paper in a particular journal, volume and start-page


	“AU=”
	“AU=Smith”
	Described in a paper, or submitted to NCBI, by a particular author





The full list of possible arguments for the “query()” funtion are given on its help page.
Here are some examples using the query function:







	Input to the query() function
	Searches for sequences:




	“AC=NC_001477”
	With accession number NC_001477


	“R=Nature/460/352”
	Published in Nature 460:352-358


	“SP=Chlamydia trachomatis”
	From the bacterium Chlamydia trachomatis


	“AU=Berriman”
	Published in a paper, or submitted to NCBI, by someone called Berriman


	“K=flagellin OR K=fibrinogen”
	Which have the keyword ‘flagellin’ or ‘fibrinogen’


	“SP=Mycobacterium leprae AND K=dnaA”
	Which are from M. leprae, and have the keyword “dnaA”


	“SP=Homo sapiens AND K=colon cancer”
	Which are from human, and have the keyword “colon cancer”


	“SP=Homo sapiens AND K=malaria”
	Which are from human, and have the keyword “malaria”


	“SP=Homo sapiens AND M=mrna”
	Which are mRNA sequences from human


	“SP=Bacteria”
	Which are sequences from Bacteria





As explained above, the ACNUC database contains the NCBI sequence data organised into several
sub-databases, and you can view the list of those sub-databases by using the “choosebank()”
function from the SeqinR package. When you want to use “query()” to carry out a particular
sub-database (eg. “genbank”, which contains DNA and RNA sequences from the NCBI Sequence Database), you
need to first specify the database that you want to search by using the “choosebank()” function,
for example:

> choosebank("genbank") # Specify that we want to search the 'genbank' ACNUC sub-database





Likewise, to specify that we want to search the ‘refseq’ ACNUC sub-database, which contains sequences
from the NCBI RefSeq database, we would type:

> choosebank("refseq") # Specify that we want to search the 'refseq' ACNUC sub-database





Once you have specified which ACNUC sub-database you want to search, you can carry out a search of that
sub-database by using the “query()” function. You need to pass the “query()” function both a name for your query
(which you can make up),  and the query itself (which will be in the format of the examples in the table above). For example,
if we want to search for RefSeq sequences from Bacteria, we might decide to call our query “RefSeqBact”, and we would
call the “query()” function as follows:

> query("RefSeqBact", "SP=Bacteria")





As explained below, the results of the search are stored in a list variable called “RefSeqBact”, and can
be retrieved from that list variable. The last thing to do once you have completed your search is to close
the connection to the ACNUC sub-database that you were searching, by typing:

> closebank()





Thus, there are three steps involved in carrying out a query using SeqinR: first use “choosebank()” to select
the ACNUC sub-database to search, secondly use “query()” to query the database, and thirdly use “closebank()”
to close the connection to the ACNUC sub-database.

Another example could be to search for mRNA sequences from the parasitic worm Schistosoma mansoni in the
NCBI Nucleotide database. The appropriate ACNUC sub-database to search is the “genbank” ACNUC sub-database.
We may decide to call our search “SchistosomamRNA”. Therefore, to carry out the search, we type in R:

> choosebank("genbank")
> query("SchistosomamRNA", "SP=Schistosoma mansoni AND M=mrna")
> closebank()






Example: finding the sequence for the DEN-1 Dengue virus genome

Another example could be to search for the DEN-1 Dengue virus genome sequence, which has accession NC_001477.
This is a viral genome sequence, and so should be in the ACNUC sub-database “refSeqViruses”. Thus to search
for this sequence, calling our search “Dengue1”, we type in R:

> choosebank("refseqViruses")
> query("Dengue1", "AC=NC_001477")





The result of the search is now stored in the list variable Dengue1.
Remember that a list is an R object that is like a vector, but can contain elements
that are numeric and/or contain characters. In this case, the list Dengue1 contains information
on the NCBI records that match the query (ie. information on the NCBI record for accession NC_001477).

If you look at the help page for “query()”, the details of the arguments are given under the heading “Arguments”,
and the details of the results (outputs) are given under the heading “Value”. If you read this now, you
will see that it tells us that the result of the “query()” function is a list with six different named
elements, named “call”, “name”, “nelem”, “typelist”, “req”, and “socket”. The content of each of these
six named elements is explained, for example, the “nelem” element contains the number of sequences
that match the query, and the “req” element contains their accession numbers.

In our example, the list object Dengue1 is an output of the “query()” function, and
so has each of these six named elements, as we can find out by using the “attributes()” function,
and looking at the named elements listed under the heading “$names”:

> attributes(Dengue1)
  $names
  [1] "call"     "name"     "nelem"    "typelist" "req"      "socket"
  $class
  [1] "qaw"





As explained in the brief introduction to R, we can retrieve
the value for each of the named elements in the list Dengue1 by using “$”, followed by the element’s name,
for example, to get the value of the element named “nelem” in the list Dengue1, we type:

> Dengue1$nelem
  [1] 1





This tells us that there was one sequence in the ‘refseqViruses’ ACNUC database that matched the query.
This is what we would expect, as there should only be one sequence corresponding to accession NC_001477.

To obtain the accession numbers of the sequence found, we can type:

> Dengue1$req
  [[1]]
       name      length       frame      ncbicg
  "NC_001477"     "10735"         "0"         "1"





As expected, the accession number of the matching sequence is NC_001477.

When you type “attributes(Dengue1)” you can see that there are two headings, “$names”, and
“$class”. As explained above, the named elements of the list variable Dengue1 are listed
under the heading “$names”. In fact, the headings “$names” and “$class” are two attributes
of the list variable Dengue1. We can retrieve the values of the attributes of a variable
using the “attr()” function. For example, to retrieve the value of the attribute “$names”
of Dengue1, we type:

> attr(Dengue1, "names")
  [1] "call"     "name"     "nelem"    "typelist" "req"      "socket"





This gives us the value of the attribute “$names”, which contains the the names of the named
elements of the list variable Dengue1. Similarly, we can retrieve the value of the a
attribute “$class” of Dengue1, we type:

> attr(Dengue1, "class")
  [1] "qaw"





This tells us that the value of the attribute “$class” is “qaw”.

The final step in retrieving a genomic DNA sequence is to use the “getSequence()” function to tell R to
retrieve the sequence data. The command below uses “getSequence()” to retrieve the sequence data
for the DEN-1 Dengue virus genome, and puts the sequence into a variable dengueseq:

> dengueseq <- getSequence(Dengue1$req[[1]])





Note that the input to the getSequence() command is Dengue1$req[[1]], which contains the name of the NCBI record
that the list Dengue1 contains information about.

Once you have retrieved a sequence, you can then print it out. The variable dengueseq is a
vector containing the nucleotide sequence. Each element of the vector contains one nucleotide of
the sequence. Therefore, we can print out the first 50 nucleotides of
the DEN-1 Dengue genome sequence by typing:

> dengueseq[1:50]
  [1] "a" "g" "t" "t" "g" "t" "t" "a" "g" "t" "c" "t" "a" "c" "g" "t" "g" "g" "a"
  [20] "c" "c" "g" "a" "c" "a" "a" "g" "a" "a" "c" "a" "g" "t" "t" "t" "c" "g" "a"
  [39] "a" "t" "c" "g" "g" "a" "a" "g" "c" "t" "t" "g"





Note that dengueseq[1:50] refers to the elements of the vector dengueseq with
indices from 1-50. These elements contain the first 50 nucleotides of the DEN-1 Dengue virus genome
sequence.

As well as retrieving the DNA (or RNA or protein) sequence itself, SeqinR can also
retrieve all the annotations for the sequence, for example, information
on when the sequence was sequenced, who sequenced it, what organism is it from,
what paper was it described in, what genes were identified in the sequence, and so on.

Once you have retrieved a sequence using SeqinR, you can retrieved its annotations
by using the “getAnnot()” function. For example, to view the annotations
for the DEN-1 Dengue virus genome sequence, we type:

> annots <- getAnnot(Dengue1$req[[1]])





This stores the annotations information from the NCBI record for the DEN-1 Dengue
virus sequence in a vector variable annots, with one line of the NCBI
record in each element of the vector. Therefore, we can print out the first 20 lines
of the NCBI record by typing:

> annots[1:20]
  [1] "LOCUS       NC_001477              10735 bp ss-RNA     linear   VRL 08-DEC-2008"
  [2] "DEFINITION  Dengue virus type 1, complete genome."
  [3] "ACCESSION   NC_001477"
  [4] "VERSION     NC_001477.1  GI:9626685"
  [5] "DBLINK      Project: 15306"
  [6] "KEYWORDS    ."
  [7] "SOURCE      Dengue virus 1"
  [8] "  ORGANISM  Dengue virus 1"
  [9] "            Viruses; ssRNA positive-strand viruses, no DNA stage; Flaviviridae;"
  [10] "            Flavivirus; Dengue virus group."
  [11] "REFERENCE   1  (bases 1 to 10735)"
  [12] "  AUTHORS   Puri,B., Nelson,W.M., Henchal,E.A., Hoke,C.H., Eckels,K.H.,"
  [13] "            Dubois,D.R., Porter,K.R. and Hayes,C.G."
  [14] "  TITLE     Molecular analysis of dengue virus attenuation after serial passage"
  [15] "            in primary dog kidney cells"
  [16] "  JOURNAL   J. Gen. Virol. 78 (PT 9), 2287-2291 (1997)"
  [17] "   PUBMED   9292016"
  [18] "REFERENCE   2  (bases 1 to 10735)"
  [19] "  AUTHORS   McKee,K.T. Jr., Bancroft,W.H., Eckels,K.H., Redfield,R.R.,"
  [20] "            Summers,P.L. and Russell,P.K."





On the left of the annotations, you will see that there is a column containing the field name.
For example, the line of the with “ACCESSION” in the left column is the accession field, which
contains the accession for the sequence (NC_001477 for the DEN-1 Dengue virus).

The line with “ORGANISM” in the left column is the organism field, and usually contains the Latin name
for the organism (“Dengue virus 1” here). The line with “AUTHORS” in the
left column is the authors field, and contain the names of authors that wrote papers to
describe the sequence and/or the names of the people who submitted the sequence to the NCBI Database.

When you have finished your running your query and getting the corresponding sequences and annotations, close
the connection to the ACNUC sub-database:

> closebank()








Example: finding the sequences published in Nature 460:352-358

We described above how to search for the sequences published in Nature 460:352-358, using the NCBI website.
A second method is to use the SeqinR R package to search the ACNUC databases (which contain the NCBI sequence data) from R.

If you look at the help page the “query()” function, you see that you can query for sequences
published in a particular paper using R=refcode, specifying the reference as refcode
such as in jcode/volume/page (e.g., JMB/13/5432 or R=Nature/396/133). For the
paper Nature 460:352-358, we would need to use the refcode ‘R=Nature/460/352’.

First we need to specify which of the ACNUC databases we want to search. For example, to specify
that we want to search the “genbank” ACNUC database, which contains DNA and RNA sequences
from the NCBI Nucleotide database, we type:

> choosebank("genbank") # Specify that we want to search the 'genbank' ACNUC sub-database





We can then search the ‘genbank’ database for sequences that match a specific set of criteria
by using the “query()” function. For example, to search for sequences that were published in
Nature 460:352-358, we type:

> query('naturepaper', 'R=Nature/460/352')





The line above tells R that we want to store the results of the query in an R list variable called
naturepaper. To get the value of the element named “nelem” in the list naturepaper, we type:

> naturepaper$nelem
  [1] 19022





This tells us that there were 19022 sequences in the ‘genbank’ ACNUC database that matched the query.
The ‘genbank’ ACNUC database contains DNA or RNA sequences from the NCBI Nucleotide database.
Why don’t we get the same number of sequences as found by carrying out the search on the NCBI website
(where we found 50890 hits to the NCBI Nucleotide database)? The reason is that the ACNUC ‘genbank’
database does not contain all the sequences in the NCBI Nucleotide database, for example, it does
not contain sequences that are in RefSeq or many short DNA sequences from sequencing projects.

To obtain the accession numbers of the first five of the 19022 sequences, we can type:

> accessions <- naturepaper$req
> accessions[1:5]
  [[1]]
       name     length      frame     ncbicg
  "FN357292"  "4179495"        "0"        "1"
  [[2]]
       name     length      frame     ncbicg
  "FN357293"  "2211188"        "0"        "1"
  [[3]]
       name     length      frame     ncbicg
  "FN357294"  "1818661"        "0"        "1"
  [[4]]
       name     length      frame     ncbicg
  "FN357295"  "2218116"        "0"        "1"
  [[5]]
       name     length      frame     ncbicg
  "FN357296"  "3831198"        "0"        "1"





This tells us that the NCBI accessions of the first five sequences (of the 19022
DNA or RNA sequences found that were published in Nature 460:352-358) are FN357292,
FN357293, FN357294, FN357295, and FN357296.

To retrieve these first five sequences, and print out the first 10 nucleotide
bases of each sequence, we use the getSequence() command, typing:

> for (i in 1:5)
  {
     seqi <- getSequence(naturepaper$req[[i]])
     print(seqi[1:10])
  }
  [1] "t" "t" "g" "t" "c" "g" "a" "t" "t" "a"
  [1] "g" "g" "t" "c" "c" "t" "t" "a" "a" "g"
  [1] "g" "c" "c" "t" "g" "a" "c" "c" "a" "t"
  [1] "t" "a" "t" "t" "t" "c" "c" "a" "a" "t"
  [1] "c" "a" "a" "t" "c" "a" "c" "t" "c" "a"





Note that the input to the getSequence() command is Dengue1$req[[i]], which contains the name of i th NCBI record
that the list naturepaper contains information about.

Once we have carried out our queries and retrieved the sequences, the final step is to close
the connection to the ACNUC sub-database that we searched (“genbank” here):

> closebank()








Saving sequence data in a FASTA-format file

Once you have retrieved a sequence, or set of sequences from the NCBI Database, using SeqinR,
it is conveninent to save the sequences in a file in FASTA format.
This can be done using the “write.fasta()” function in the SeqinR package, which was
introduced in Chapter 1.

If you look at the help page for the “write.fasta()” function, you will see
that as input it takes a list of vectors, where each vector contains one DNA, RNA or
protein sequence.

For example, if you retrieve the sequences of human tRNAs from the NCBI Database by querying the
ACNUC “genbank” sub-database, you can save the sequences in a FASTA format file called “humantRNAs.fasta”
by typing:

> choosebank("genbank")                             # select the ACNUC sub-database to be searched
> query("humtRNAs", "SP=homo sapiens AND M=TRNA")   # specify the query
> myseqs <- getSequence(humtRNAs)                   # get the sequences
> mynames <- getName(humtRNAs)                      # get the names of the sequences
> write.fasta(myseqs, mynames, file.out="humantRNAs.fasta")
> closebank()





In the above code, we get the sequences of the human tRNAs using the function “getSequence()”
from the SeqinR package. We also use a function “getName()”
from the SeqinR package to get the sequences’ names. Then we use the “write.fasta()” function to
write the sequences to a FASTA file “humantRNAs.fasta”. The “write.fasta()” takes as arguments:
the list myseqs containing the sequences, the list mynames containing the names of the sequences,
and the name of the output file (“humantRNAs.fasta” here).






Finding the genome sequence for a particular species

Microbial genomes are generally smaller than eukaryotic genomes
(Escherichia coli has about 5 million base pair in its genome,
while the human genome is about 3 billion base pairs). Because they
are considerably less expensive to sequence, many microbial genome
sequencing projects have been completed.

If you don’t know the accession number for a genome sequence (eg.
for Mycobacterium leprae, the bacterium that causes leprosy), how can you find it out?

The easiest way to do this is to look at the NCBI Genome website, which lists all
fully sequenced genomes and gives the accession numbers for the
corresponding DNA sequences.

If you didn’t know the accession number for the
Mycobacterium leprae genome, you could find it on the NCBI
Genome website by following these steps:


	Go to the NCBI Genome website
(http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome)

	On the homepage of the NCBI Genome website, it gives links to the
major subdivisions of the Genome database, which include
Eukaryota, Prokaryota (Bacteria and Archaea), and Viruses.
Click on ‘Prokaryota’, since
Mycobacterium leprae is a bacterium. This will bring up a list
of all fully sequenced bacterial genomes, with the corresponding
accession numbers. Note that more than one genome (from various
strains) may have been sequenced for a particular species.

	Use ‘Find’ in the ‘Edit’ menu of your web browser to search for
‘Mycobacterium leprae’ on the webpage. You should find that the
genomes of several different M. leprae strains have been
sequenced. One of these is M. leprae TN, which has
accession number NC_002677.



The list of sequenced genomes on the NCBI Genomes website is not a
definitive list; that is, some sequenced genomes may be missing
from this list. If you want to find out whether a particular genome
has been sequenced, but you don’t find it NCBI Genomes website’s
list, you should search for it by following these steps:


	Go to the NCBI website
(www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov]).

	Select ‘Genome’ from the drop-down list above the search box.

	Type the name of the species you are interested in in the search
box (eg. “Mycobacterium leprae”[ORGN]). Press ‘Search’.



Note that you could also have found the Mycobacterium leprae
genome sequence by searching the NCBI Nucleotide database, as the
NCBI Genome database is just a subset of the NCBI Nucleotide
database.




How many genomes have been sequenced, or are being sequenced now?

On the NCBI Genome website
(http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome),
the front page gives a link to a list of all sequenced genomes in the
groups Eukaryota, Prokaryota (Bacteria and Archaea) and Viruses.
If you click on one of these links (eg. Prokaryota), at the top of the
page it will give the number of sequenced genomes in that group (eg. number of sequenced
prokaryotic genomes). For example, in this screenshot (from January 2011), we see that there
were 1409 complete prokaryotic genomes (94 archaeal, 1315 bacterial):

[image: image1]

Another useful website that lists genome sequencing projects is the
Genomes OnLine Database (GOLD), which lists genomes that have been
completely sequenced, or are currently being sequenced. To find the
number of complete or ongoing bacterial sequencing projects, follow
these steps:


	Go to the GOLD website
(http://genomesonline.org/).

	Click on the yellow ‘Enter GOLD’ button in the centre of the
webpage. On the subsequent page, it will give the number of ongoing
bacterial, archaeal and eukaryotic genome sequencing projects.

	Click on the ‘Bacterial Ongoing’ link to see the list of
ongoing bacterial genome sequencing projects. By default, just the
first 100 projects are listed, and the rest are listed on subsequent pages.
In one of the columns
of the page, this gives the university or institute that the genome
was sequenced in. Other columns give the taxonomic information for
the organism, and links to the sequence data.

	Find the number of published genome sequencing projects. Go back
one page, to the page with the ‘Bacterial Ongoing’ link.
You will see that this page also lists the number of complete published
genomes. To see a list of these genomes, click on ‘Complete Published’.
This will bring up a page that gives the number of published
genomes at the top of the page. In one column of the page, this
gives the university or institute that the genome was sequenced
in.



As explained above, it is possible to identify genome sequence data
in the NCBI Genome database. The GOLD database also gives some
information about ongoing genome projects. Often, the GOLD database
lists some ongoing projects that are not yet present in the NCBI
Genome Database, because the sequence data has not yet been
submitted to the NCBI Database. If you are interested in finding
out how many genomes have been sequenced or are currently being
sequenced for a particular species (eg. Mycobacterium leprae), it
is a good idea to look at both the NCBI Genome database and at
GOLD.




Summary

In this chapter, you have learnt how to retrieve sequences from
the NCBI Sequence database, as well as to find out how many genomes
have been sequenced or are currently being sequenced for a
particular species.




Links and Further Reading

There is detailed information on how to search the NCBI database on
the NCBI Help website at
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=helpentrez?part=EntrezHelp [http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=helpentrez%26part=EntrezHelp].

There is more information about the GOLD database in the paper
describing GOLD by Liolios et al, which is available at
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808860/?tool=pubmed.

For more in-depth information and more examples on using the SeqinR
package for sequence analysis, look at the SeqinR documentation,
http://pbil.univ-lyon1.fr/software/seqinr/doc.php?lang=eng.

There is also a very nice chapter on “Analyzing Sequences”, which
includes examples of using SeqinR for sequence analysis, in the
book Applied statistics for bioinformatics using R by Krijnen
(available online at
cran.r-project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf [http://cran.r-project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf]).




Acknowledgements

Thank you to Noel O’Boyle for helping in using Sphinx, http://sphinx.pocoo.org, to create
this document, and github, https://github.com/, to store different versions of the document
as I was writing it, and readthedocs, http://readthedocs.org/, to build and distribute
this document.

Thank you to Andrew Lloyd and David Lynn, who generously shared their practical on sequence databases
with me, which inspired many of the examples in this practical.

Thank you to Jean Lobry and Simon Penel for helpful advice on using the SeqinR package.




Contact

I will be grateful if you will send me (Avril Coghlan [http://www.sanger.ac.uk/research/projects/parasitegenomics/]) corrections or suggestions for improvements to
my email address alc@sanger.ac.uk




License

The content in this book is licensed under a Creative Commons Attribution 3.0 License [http://creativecommons.org/licenses/by/3.0/].




Exercises

Answer the following questions. For each question, please record
your answer, and what you did/typed to get this answer.

Model answers to the exercises are given in
Answers to the exercises on Sequence Databases.


	Q1. What information about the rabies virus sequence (NCBI accession NC_001542) can you obtain from its annotations in the NCBI Sequence Database?

	What does it say in the DEFINITION and ORGANISM fields of its NCBI record?
Note: rabies virus is the virus responsible for rabies [http://www.who.int/rabies/en/], which is classified by the WHO as a neglected
tropical disease.

	Q2. How many nucleotide sequences are there from the bacterium Chlamydia trachomatis in the NCBI Sequence Database?

	Note: the bacterium Chlamydia trachomatis is responsible for causing trachoma [http://www.who.int/blindness/causes/priority/en/index2.html],
which is classified by the WHO as a neglected tropical disease.



Q3. How many nucleotide sequences are there from the bacterium Chlamydia trachomatis in the RefSeq part of the NCBI Sequence Database?

Q4. How many nucleotide sequences were submitted to NCBI by Matthew Berriman?


	Q5. How many nucleotide sequences from nematode worms are there in the RefSeq Database?

	Note that several parasitic nematode worms cause neglected tropical diseases, including
Brugia malayi and Wucheria bancrofti, which cause lymphatic filariasis [http://www.who.int/lymphatic_filariasis/en/];
Loa loa, which causes subcutaneous filariasis; Onchocerca volvulus, which causes
onchocerciasis [http://www.who.int/topics/onchocerciasis/en/]; and Necator americanus, which
causes soil-transmitted helminthiasis [http://www.who.int/intestinal_worms/en/index.html].



Q6. How many nucleotide sequences for collagen genes from nematode worms are there in the NCBI Database?

Q7. How many mRNA sequences for collagen genes from nematode worms are there in the NCBI Database?

Q8. How many protein sequences for collagen proteins from nematode worms are there in the NCBI database?


	Q9. What is the accession number for the Trypanosoma cruzi genome in NCBI?

	Do you see genome sequences for more than one strain of Trypanosoma cruzi?
Note that the Trypanosoma cruzi causes Chagas disease [http://www.who.int/topics/chagas_disease/en/],
which is classified as a neglected tropical disease by the WHO.



Q10. How many fully sequenced nematode worm species are represented in the NCBI Genome database?







          

      

      

    

  

    
      
          
            
  
REVISION EXERCISES 1

These are some revision exercises on sequence statistics and sequence
databases.


Exercises

Answer the following questions. For each question, please record
your answer, and what you did/typed to get this answer.

Model answers to the exercises are given in
Answers to Revision Exercises 1.




Q1.

What is the length of (total number of base-pairs in) the Schistosoma mansoni mitochondrial genome
(NCBI accession NC_002545), and how many As, Cs, Gs and Ts does it contain?


You must search for this sequence via the NCBI website, as it is not present in the ACNUC database.
Note: Schistmosoma mansoni is a parasitic worm that is responsible for causing
schistosomiasis [http://apps.who.int/tdr/svc/diseases/schistosomiasis],
which is classified by the WHO as a neglected tropical disease.





Q2.

What is the length of the Brugia malayi mitochondrial genome (NCBI accession NC_004298),
and how many As, Cs, Gs and Ts does it contain?


You must search for this sequence via the NCBI website, as it is not present in the ACNUC database.
Note: Brugia malayi is a parasitic worm responsible for causing
lymphatic filariasis [http://apps.who.int/tdr/svc/diseases/lymphatic-filariasis],
which is classified by the WHO as a neglected tropical disease.





Q3.

What is the probability of the Brugia malayi mitochondrial genome sequence (NCBI accession NC_004298),
according to a multinomial model in which the probabilities of As, Cs, Gs and Ts (pA, pC, pG, and pT)
are set equal to the fraction of As, Cs, Gs and Ts in the Schistosoma mansoni mitochondrial genome?




Q4.

What are the top three most frequent 4-bp words (4-mers) in the genome of the
bacterium Chlamydia trachomatis strain D/UW-3/CX (NCBI accession NC_000117), and
how many times do they occur in its sequence?


Note: Chlamydia trachomatis is a bacterium responsible for
trachoma [http://www.who.int/blindness/causes/priority/en/index2.html], which is
classified by the WHO as a neglected tropical disease.





Q5.

Write an R function to generate a random DNA sequence that is n letters long (that is,
n bases long) using a multinomial model in which the probabilities pA, pC, pG,
and pT are set equal to the fraction of As, Cs, Gs and Ts in the Schistosoma mansoni
mitochondrial genome (here pA stands for the probability of As, pC is the probability of Cs, etc.)


Hint: look at the help page for the “sample()” function in R, as it might be useful to use within your R function.





Q6.

Give an example of using your function from Q5 to calculate a random sequence that is 20 letters
long, using a multinomial model with pA =0.28, pC =0.21, pG =0.22, and pT =0.29.




Q7.


	How many protein sequences from rabies virus are there in the NCBI Protein database?

	You must search for these sequences via the NCBI website, as it’s not possible to do this search using SeqinR.
Note: rabies virus is the virus responsible for
rabies [http://www.who.int/rabies/en/], which is classified by the WHO as a neglected
tropical disease.






Q8.


	What is the NCBI accession for the Mokola virus genome?

	Note: Mokola virus and rabies virus are closely related viruses that both belong to a group of
viruses called the Lyssaviruses. Mokola virus causes a rabies-like infection in mammals including humans.






Contact

I will be grateful if you will send me (Avril Coghlan [http://www.sanger.ac.uk/research/projects/parasitegenomics/]) corrections or suggestions for improvements to
my email address alc@sanger.ac.uk
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The content in this book is licensed under a Creative Commons Attribution 3.0 License [http://creativecommons.org/licenses/by/3.0/].







          

      

      

    

  

    
      
          
            
  
Pairwise Sequence Alignment


UniProt

In the previous chapter you learnt how to retrieve DNA and protein
sequences from the NCBI database. The NCBI database is a key database in bioinformatics
because it contains essentially all DNA sequences ever sequenced.

As mentioned in the previous chapter, a subsection of the NCBI
database called RefSeq consists of high quality DNA and protein
sequence data. Furthermore, the NCBI entries for the RefSeq
sequences have been manually curated, which means that biologists
employed by NCBI have added additional information to the NCBI
entries for those sequences, such as details of scientific papers
that describe the sequences.

Another extremely important manually curated database is UniProt
(www.uniprot.org [http://www.uniprot.org]), which focuses on
protein sequences. UniProt aims to contains manually curated
information on all known protein sequences. While many of the
protein sequences in UniProt are also present in RefSeq, the amount
and quality of manually curated information in UniProt is much
higher than that in RefSeq.

For each protein in UniProt, the UniProt curators read all the
scientific papers that they can find about that protein, and add
information from those papers to the protein’s UniProt entry. For
example, for a human protein, the UniProt entry for the protein
usually includes information about the biological function of the
protein, in what human tissues it is expressed, whether it
interacts with other human proteins, and much more. All this
information has been manually gathered by the UniProt curators from
scientific papers, and the papers in which the found the
information are always listed in the UniProt entry for the
protein.

Just like NCBI, UniProt also assigns an accession to each
sequence in the UniProt database. Although the same protein
sequence may appear in both the NCBI database and the UniProt
database, it will have different NCBI and UniProt accessions.
However, there is usually a link on the NCBI entry for the protein
sequence to the UniProt entry, and vice versa.




Viewing the UniProt webpage for a protein sequence

If you are given the UniProt accession for a protein, to find the
UniProt entry for the protein, you first need to go the UniProt
website, www.uniprot.org [http://www.uniprot.org]. At the top of
the UniProt website, you will see a search box, and you can type
the accession of the protein that you are looking for in this
search box, and then click on the “Search” button to search for
it.

For example, if you want to find the sequence for the chorismate
lyase protein from Mycobacterium leprae (the bacterium which
causes leprosy [http://apps.who.int/tdr/svc/diseases/leprosy]), which has UniProt accession
Q9CD83, you would type just “Q9CD83” in the search box and press “Search”:

[image: image0]

The UniProt entry for UniProt accession Q9CD83 will then appear in
your web browser. The picture below shows the top part of the
UniProt entry for accession Q9CD83. You can see there is a lot of
information about the protein in its UniProt entry.

Beside the heading “Organism” you can see the organism is given as
Mycobacterium leprae. Beside the heading “Taxonomic
lineage”, you can see “Bacteria > Actinobacteria > Actinobacteridae > Actinomycetales > Corynebacterineae > Mycobacteriaceae > Mycobacterium”.

This tells us that Mycobacterium is a species of
bacteria, which belongs to a group of related bacteria called the
Mycobacteriaceae, which itself belongs to a larger group of
related bacteria called the Corynebacterineae, which itself belongs
to an even larger group of related bacteria called the
Actinomycetales, which itself belongs to the Actinobacteridae,
which itself belongs to a huge group of bacteria called the
Actinobacteria.

Beside the heading “Sequence length” we see that the sequence is
210 amino acids long (210 letters long). Further down, beside the
heading “Function”, it says that the function of this protein is
that it “Removes the pyruvyl group from chorismate to provide 4-hydroxybenzoate (4HB)”.
This tells us this protein is an
enzyme (a protein that increases the rate of a specific biochemical
reaction), and tells us what is the particular biochemical reaction
that this enzyme is involved in.

Further down the UniProt page for this protein, you will see a lot
more information, as well as many links to webpages in other
biological databases, such as NCBI. The huge amount of information
about proteins in UniProt means that if you want to find out about
a particular protein, the UniProt page for that protein is a great
place to start.

[image: image1]




Retrieving a UniProt protein sequence via the UniProt website

To retrieve a FASTA-format file containing the sequence for a
particular protein, you need to look at the top right of the
UniProt entry for the protein on the UniProt website [http://www.uniprot.org].

You will see a small orange button labelled “FASTA”, which you should click on:

[image: image2]

The FASTA-format sequence for the accession will now appear in your
web browser. To save it as a file, go to the “File” menu of your
web browser, choose “Save page as”, and save the file. Remember to
give the file a sensible name (eg. “Q9CD83.fasta” for accession
Q9CD83), and in a place that you will remember (eg. in the “My
Documents” folder).

For example, you can retrieve the protein sequences for the
chorismate lyase protein from Mycobacterium leprae (which
has UniProt accession Q9CD83) and for the chorismate lyase protein
from Mycobacterium ulcerans (UniProt accession A0PQ23), and save them
as FASTA-format files (eg. “Q9CD83.fasta” and “A0PQ23.fasta”, as
described above.

Note that Mycobacterium leprae is the bacterium which
causes leprosy [http://apps.who.int/tdr/svc/diseases/leprosy],
while Mycobacterium ulcerans is a related bacterium which
causes Buruli ulcer [http://www.who.int/buruli/en/], both of which
are classified by the WHO as neglected tropical diseases.

Note that the M. leprae and M. ulcerans chorismate
lyase proteins are an example of a pair of homologous (related)
proteins in two related species of bacteria.

Once you have downloaded the protein sequences for UniProt
accessions Q9CD83 and A0PQ23 and saved them as FASTA-format files
(eg. “Q9CD83.fasta” and “A0PQ23.fasta”), you can read them into R
using the read.fasta() function in the SeqinR R package (as
described in chapter 1).

Remember that the read.fasta() function expects that you have put
your FASTA-format files in the “My Documents” folder on your
computer.

For example, the following commands will read the FASTA-format
files Q9CD83.fasta and A0PQ23.fasta into R, and store the two
protein sequences in two vectors lepraeseq and ulceransseq:

> library("seqinr")
> leprae <- read.fasta(file = "Q9CD83.fasta")
> ulcerans <- read.fasta(file = "A0PQ23.fasta")
> lepraeseq <- leprae[[1]]
> ulceransseq <- ulcerans[[1]]
> lepraeseq # Display the contents of the vector "lepraeseq"
  [1] "m" "t" "n" "r" "t" "l" "s" "r" "e" "e" "i" "r" "k" "l" "d" "r" "d" "l"
  [19] "r" "i" "l" "v" "a" "t" "n" "g" "t" "l" "t" "r" "v" "l" "n" "v" "v" "a"
  [37] "n" "e" "e" "i" "v" "v" "d" "i" "i" "n" "q" "q" "l" "l" "d" "v" "a" "p"
  [55] "k" "i" "p" "e" "l" "e" "n" "l" "k" "i" "g" "r" "i" "l" "q" "r" "d" "i"
  [73] "l" "l" "k" "g" "q" "k" "s" "g" "i" "l" "f" "v" "a" "a" "e" "s" "l" "i"
  [91] "v" "i" "d" "l" "l" "p" "t" "a" "i" "t" "t" "y" "l" "t" "k" "t" "h" "h"
  [109] "p" "i" "g" "e" "i" "m" "a" "a" "s" "r" "i" "e" "t" "y" "k" "e" "d" "a"
  [127] "q" "v" "w" "i" "g" "d" "l" "p" "c" "w" "l" "a" "d" "y" "g" "y" "w" "d"
  [145] "l" "p" "k" "r" "a" "v" "g" "r" "r" "y" "r" "i" "i" "a" "g" "g" "q" "p"
  [163] "v" "i" "i" "t" "t" "e" "y" "f" "l" "r" "s" "v" "f" "q" "d" "t" "p" "r"
  [181] "e" "e" "l" "d" "r" "c" "q" "y" "s" "n" "d" "i" "d" "t" "r" "s" "g" "d"
  [199] "r" "f" "v" "l" "h" "g" "r" "v" "f" "k" "n" "l"








Retrieving a UniProt protein sequence using SeqinR

An alternative method of retrieving a UniProt protein sequence is to use the
SeqinR package to query the ACNUC sub-database “swissprot”, which contains protein
sequences from UniProt.

We use the query() function from SeqinR to query this database, as described
in chapter3.

For example to retrieve the protein sequences for UniProt accessions Q9CD83
and A0PQ23, we type in R:

> library("seqinr")
> choosebank("swissprot")
> query("leprae", "AC=Q9CD83")
> lepraeseq <- getSequence(leprae$req[[1]])
> query("ulcerans", "AC=A0PQ23")
> ulceransseq <- getSequence(ulcerans$req[[1]])
> closebank()
> lepraeseq # Display the contents of "lepraeseq"
  [1] "M" "T" "N" "R" "T" "L" "S" "R" "E" "E" "I" "R" "K" "L" "D" "R" "D" "L"
  [19] "R" "I" "L" "V" "A" "T" "N" "G" "T" "L" "T" "R" "V" "L" "N" "V" "V" "A"
  [37] "N" "E" "E" "I" "V" "V" "D" "I" "I" "N" "Q" "Q" "L" "L" "D" "V" "A" "P"
  [55] "K" "I" "P" "E" "L" "E" "N" "L" "K" "I" "G" "R" "I" "L" "Q" "R" "D" "I"
  [73] "L" "L" "K" "G" "Q" "K" "S" "G" "I" "L" "F" "V" "A" "A" "E" "S" "L" "I"
  [91] "V" "I" "D" "L" "L" "P" "T" "A" "I" "T" "T" "Y" "L" "T" "K" "T" "H" "H"
  [109] "P" "I" "G" "E" "I" "M" "A" "A" "S" "R" "I" "E" "T" "Y" "K" "E" "D" "A"
  [127] "Q" "V" "W" "I" "G" "D" "L" "P" "C" "W" "L" "A" "D" "Y" "G" "Y" "W" "D"
  [145] "L" "P" "K" "R" "A" "V" "G" "R" "R" "Y" "R" "I" "I" "A" "G" "G" "Q" "P"
  [163] "V" "I" "I" "T" "T" "E" "Y" "F" "L" "R" "S" "V" "F" "Q" "D" "T" "P" "R"
  [181] "E" "E" "L" "D" "R" "C" "Q" "Y" "S" "N" "D" "I" "D" "T" "R" "S" "G" "D"
  [199] "R" "F" "V" "L" "H" "G" "R" "V" "F" "K" "N" "L"








Comparing two sequences using a dotplot

As a first step in comparing two protein, RNA or DNA sequences, it is a good idea to make a dotplot.
A dotplot is a graphical method that allows the comparison of two protein or DNA sequences and identify regions of close similarity between them. A dotplot is essentially a two-dimensional matrix (like a grid), which has the sequences of the proteins being compared along the vertical and horizontal axes.

In order to make a simple dotplot to represent of the similarity between two sequences, individual cells in the matrix can be shaded black if residues are identical, so that matching sequence segments appear as runs of diagonal lines across the matrix. Identical proteins will have a line exactly on the main diagonal of the dotplot, that spans across the whole matrix.

For proteins that are not identical, but share regions of similarity, the dotplot will have shorter lines that may be on the main diagonal, or off the main diagonal of the matrix.
In essence, a dotplot will reveal if there are any regions
that are clearly very similar in two protein (or DNA) sequences.

We  can create a dotplot for two sequences using the “dotPlot()” function in the SeqinR R package.

For example, if we want to create a dotplot of the sequences for the
chorismate lyase proteins from Mycobacterium leprae and Mycobacterium ulcerans, we would
type:

> dotPlot(lepraeseq, ulceransseq)





[image: image5]

In the dotplot above, the M. leprae sequence is plotted along the x-axis (horizontal axis), and
the M. ulcerans sequence is plotted along the y-axis (vertical axis). The dotplot displays a dot
at points where there is an identical amino acid in the two sequences.

For example, if amino acid 53 in the M. leprae sequence is the same amino acid (eg. “W”)
as amino acid 70 in the M. ulcerans sequence, then the dotplot will show a dot the position in
the plot where x =50 and y =53.

In this case you can see a lot of dots along a diagonal
line, which indicates that the two protein sequences contain many identical amino acids at the
same (or very similar) positions along their lengths. This is what you would expect,
because we know that these two proteins are homologues (related proteins).




Pairwise global alignment of DNA sequences using the Needleman-Wunsch algorithm

If you are studying a particular pair of genes or proteins, an
important question is to what extent the two sequences are similar.

To quantify similarity, it is necessary to align the two
sequences, and then you can calculate a similarity score based on
the alignment.

There are two types of alignment in general. A global alignment
is an alignment of the full length of two sequences, for example,
of two protein sequences or of two DNA sequences. A local
alignment is an alignment of part of one sequence to part of
another sequence.

The first step in computing a alignment (global or local) is to
decide on a scoring system. For example, we may decide to give a
score of +2 to a match and a penalty of -1 to a mismatch, and a
penalty of -2 to a gap. Thus, for the alignment:

G A A T T C
G A T T - A





we would compute a score of 2 + 2 -1 + 2 -2 - 1 = 2. Similarly, the
score for the following alignment is 2 + 2 -2 + 2 + 2 -1 = 5:

G A A T T C
G A - T T A





The scoring system above can be represented by a scoring matrix
(also known as a substitution matrix). The scoring matrix
has one row and one column for each possible
letter in our alphabet of letters (eg. 4 rows and 4 columns for DNA
sequences). The (i,j) element of the matrix has a value of +2
in case of a match and -1 in case of a mismatch.

We can make a scoring matrix in R by using the
nucleotideSubstitutionMatrix() function in the Biostrings()
package. The Biostrings package is part of a set of R packages for
bioinformatics analysis known as Bioconductor
(www.bioconductor.org/ [http://www.bioconductor.org/]).

To use the Biostrings package, you will first need to install the
package (see the instructions here).

The arguments (inputs) for the nucleotideSubstitutionMatrix() function
are the score that we want to assign to a match and the score that
we want to assign to a mismatch. We can also specify that we want
to use only the four letters representing the four nucleotides (ie.
A, C, G, T) by setting ‘baseOnly=TRUE’, or whether we also want to
use the letters that represent ambiguous cases where we are not
sure what the nucleotide is (eg. ‘N’ = A/C/G/T).

To make a scoring matrix which assigns a score of +2 to a match and
-1 to a mismatch, and store it in the variable sigma, we type:

> library(Biostrings)
> sigma <- nucleotideSubstitutionMatrix(match = 2, mismatch = -1, baseOnly = TRUE)
> sigma # Print out the matrix
   A  C  G  T
A  2 -1 -1 -1
C -1  2 -1 -1
G -1 -1  2 -1
T -1 -1 -1  2





Instead of assigning the same penalty (eg. -8) to every gap
position, it is common instead to assign a gap opening penalty to
the first position in a gap (eg. -8), and a smaller
gap extension penalty to every subsequent position in the same
gap.

The reason for doing this is that it is likely that adjacent
gap positions were created by the same insertion or deletion event,
rather than by several independent insertion or deletion events.
Therefore, we don’t want to penalise a 3-letter gap as much as we
would penalise three separate 1-letter gaps, as the 3-letter gap
may have arisen due to just one insertion or deletion event, while
the 3 separate 1-letter gaps probably arose due to three
independent insertion or deletion events.

For example, if we want to compute the score for a global alignment
of two short DNA sequences ‘GAATTC’ and ‘GATTA’, we can use the
Needleman-Wunsch algorithm to calculate the highest-scoring
alignment using a particular scoring function.

The “pairwiseAlignment()” function in the Biostrings R package finds the
score for the optimal global alignment between two sequences using
the Needleman-Wunsch algorithm, given a particular scoring system.

As arguments (inputs), the pairwiseAlignment() function takes the
two sequences that you want to align, the scoring matrix, the gap
opening penalty, and the gap extension penalty. You can also tell
the function that you want to just have the optimal global
alignment’s score by setting “scoreOnly = TRUE”, or that you want
to have both the optimal global alignment and its score by setting
“scoreOnly = FALSE”.

For example, to find the score for the optimal
global alignment between the sequences ‘GAATTC’ and ‘GATTA’, we
type:

> s1 <- "GAATTC"
> s2 <- "GATTA"
> globalAligns1s2 <- pairwiseAlignment(s1, s2, substitutionMatrix = sigma, gapOpening = -2,
gapExtension = -8, scoreOnly = FALSE)
> globalAligns1s2 # Print out the optimal alignment and its score
Global Pairwise Alignment (1 of 1)
pattern: [1] GAATTC
subject: [1] GA-TTA
score: -3





The above commands print out the optimal global alignment for the
two sequences and its score.

Note that we set “gapOpening” to be -2 and “gapExtension” to be -8, which means that
the first position of a gap is assigned a score of (-8-2=)-10, and every subsequent
position in a gap is given a score of -8. Here the alignment contains four matches,
one mismatch, and one gap of length 1, so its score is (4*2)+(1*-1)+(1*-10) = -3.




Pairwise global alignment of protein sequences using the Needleman-Wunsch algorithm

As well as DNA alignments, it is also possible to make alignments
of protein sequences. In this case it is necessary to use a scoring
matrix for amino acids rather than for nucleotides.

There are several well known scoring matrices that come with R, such as the
BLOSUM series of matrices. Different BLOSUM matrices exist, named
with different numbers. BLOSUM with high numbers are designed for
comparing closely related sequences, while BLOSUM with low numbers
are designed for comparing distantly related sequences. For
example, BLOSUM62 is used for less divergent alignments (alignments
of sequences that differ little), and BLOSUM30 is used for more
divergent alignments (alignments of sequences that differ a lot).

Many R packages come with example data sets or data files. The
“data()” function is used to load these data files. You can use the
data() function in R to load a data set of BLOSUM matrices that
comes with R Biostrings() package.

To load the BLOSUM50 matrix, we type:

> data(BLOSUM50)
> BLOSUM50 # Print out the data
   A  R  N  D  C  Q  E  G  H  I  L  K  M  F  P  S  T  W  Y  V  B  Z  X  *
A  5 -2 -1 -2 -1 -1 -1  0 -2 -1 -2 -1 -1 -3 -1  1  0 -3 -2  0 -2 -1 -1 -5
R -2  7 -1 -2 -4  1  0 -3  0 -4 -3  3 -2 -3 -3 -1 -1 -3 -1 -3 -1  0 -1 -5
N -1 -1  7  2 -2  0  0  0  1 -3 -4  0 -2 -4 -2  1  0 -4 -2 -3  4  0 -1 -5
D -2 -2  2  8 -4  0  2 -1 -1 -4 -4 -1 -4 -5 -1  0 -1 -5 -3 -4  5  1 -1 -5
C -1 -4 -2 -4 13 -3 -3 -3 -3 -2 -2 -3 -2 -2 -4 -1 -1 -5 -3 -1 -3 -3 -2 -5
Q -1  1  0  0 -3  7  2 -2  1 -3 -2  2  0 -4 -1  0 -1 -1 -1 -3  0  4 -1 -5
E -1  0  0  2 -3  2  6 -3  0 -4 -3  1 -2 -3 -1 -1 -1 -3 -2 -3  1  5 -1 -5
G  0 -3  0 -1 -3 -2 -3  8 -2 -4 -4 -2 -3 -4 -2  0 -2 -3 -3 -4 -1 -2 -2 -5
H -2  0  1 -1 -3  1  0 -2 10 -4 -3  0 -1 -1 -2 -1 -2 -3  2 -4  0  0 -1 -5
I -1 -4 -3 -4 -2 -3 -4 -4 -4  5  2 -3  2  0 -3 -3 -1 -3 -1  4 -4 -3 -1 -5
L -2 -3 -4 -4 -2 -2 -3 -4 -3  2  5 -3  3  1 -4 -3 -1 -2 -1  1 -4 -3 -1 -5
K -1  3  0 -1 -3  2  1 -2  0 -3 -3  6 -2 -4 -1  0 -1 -3 -2 -3  0  1 -1 -5
M -1 -2 -2 -4 -2  0 -2 -3 -1  2  3 -2  7  0 -3 -2 -1 -1  0  1 -3 -1 -1 -5
F -3 -3 -4 -5 -2 -4 -3 -4 -1  0  1 -4  0  8 -4 -3 -2  1  4 -1 -4 -4 -2 -5
P -1 -3 -2 -1 -4 -1 -1 -2 -2 -3 -4 -1 -3 -4 10 -1 -1 -4 -3 -3 -2 -1 -2 -5
S  1 -1  1  0 -1  0 -1  0 -1 -3 -3  0 -2 -3 -1  5  2 -4 -2 -2  0  0 -1 -5
T  0 -1  0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1  2  5 -3 -2  0  0 -1  0 -5
W -3 -3 -4 -5 -5 -1 -3 -3 -3 -3 -2 -3 -1  1 -4 -4 -3 15  2 -3 -5 -2 -3 -5
Y -2 -1 -2 -3 -3 -1 -2 -3  2 -1 -1 -2  0  4 -3 -2 -2  2  8 -1 -3 -2 -1 -5
V  0 -3 -3 -4 -1 -3 -3 -4 -4  4  1 -3  1 -1 -3 -2  0 -3 -1  5 -4 -3 -1 -5
B -2 -1  4  5 -3  0  1 -1  0 -4 -4  0 -3 -4 -2  0  0 -5 -3 -4  5  2 -1 -5
Z -1  0  0  1 -3  4  5 -2  0 -3 -3  1 -1 -4 -1  0 -1 -2 -2 -3  2  5 -1 -5
X -1 -1 -1 -1 -2 -1 -1 -2 -1 -1 -1 -1 -1 -2 -2 -1  0 -3 -1 -1 -1 -1 -1 -5
* -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5  1





You can get a list of the available scoring matrices that come with
the Biostrings package by using the data() function, which takes as
an argument the name of the package for which you want to know the
data sets that come with it:

> data(package="Biostrings")
Data sets in package 'Biostring':
BLOSUM100                                 Scoring matrices
BLOSUM45                                  Scoring matrices
BLOSUM50                                  Scoring matrices
BLOSUM62                                  Scoring matrices
BLOSUM80                                  Scoring matrices





To find the optimal global alignment between the protein sequences
“PAWHEAE” and “HEAGAWGHEE” using the Needleman-Wunsch algorithm
using the BLOSUM50 matrix, we type:

> data(BLOSUM50)
> s3 <- "PAWHEAE"
> s4 <- "HEAGAWGHEE"
> globalAligns3s4 <- pairwiseAlignment(s3, s4, substitutionMatrix = "BLOSUM50", gapOpening = -2,
gapExtension = -8, scoreOnly = FALSE)
> globalAligns3s4 # Print out the optimal global alignment and its score
Global Pairwise Alignment (1 of 1)
pattern: [1] P---AWHEAE
subject: [1] HEAGAWGHEE
score: -5





We set “gapOpening” to be -2 and “gapExtension” to be -8, which means that
the first position of a gap is assigned a score of (-8-2=)-10, and every subsequent
position in a gap is given a score of -8. This means that the gap will be given
a score of -10-8-8 = -26.




Aligning UniProt sequences

We discussed above how you can search for UniProt accessions and retrieve
the corresponding protein sequences, either via the UniProt website or using the
SeqinR R package.

In the examples given above, you learnt how to retrieve the sequences for the
chorismate lyase proteins from
Mycobacterium leprae (UniProt Q9CD83) and
Mycobacterium ulcerans (UniProt A0PQ23), and read them into R, and
store them as vectors lepraeseq and ulceransseq.

You can align these sequences using pairwiseAlignment() from the Biostrings package.

As its input, the pairwiseAlignment() function requires that the
sequences be in the form of a single string (eg. “ACGTA”), rather
than as a vector of characters (eg. a vector with the first element
as “A”, the second element as “C”, etc.). Therefore, to align the
M. leprae and M. ulcerans chorismate lyase proteins, we first need
to convert the vectors lepraeeq and ulceransseq into strings. We
can do this using the c2s() function in the SeqinR package:

> lepraeseqstring <- c2s(lepraeseq)     # Make a string that contains the sequence in "lepraeseq"
> ulceransseqstring <- c2s(ulceransseq) # Make a string that contains the sequence in "ulceransseq"





Furthermore, pairwiseAlignment() requires that the sequences be
stored as uppercase characters. Therefore, if they are not already in uppercase, we need to use the
toupper() function to convert lepraeseqstring and ulceransseqstring
to uppercase:

> lepraeseqstring <- toupper(lepraeseqstring)
> ulceransseqstring <- toupper(ulceransseqstring)
> lepraeseqstring # Print out the content of "lepraeseqstring"
  [1] "MTNRTLSREEIRKLDRDLRILVATNGTLTRVLNVVANEEIVVDIINQQLLDVAPKIPELENLKIGRILQRDILLKGQKSGILFVAAESLIVIDLLPTAITTYLTKTHHPIGEIMAASRIETYKEDAQVWIGDLPCWLADYGYWDLPKRAVGRRYRIIAGGQPVIITTEYFLRSVFQDTPREELDRCQYSNDIDTRSGDRFVLHGRVFKNL"





We can now align the the M. leprae and M. ulcerans chorismate lyase
protein sequences using the pairwiseAlignment() function:

> globalAlignLepraeUlcerans <- pairwiseAlignment(lepraeseqstring, ulceransseqstring,
  substitutionMatrix = BLOSUM50, gapOpening = -2, gapExtension = -8, scoreOnly = FALSE)
> globalAlignLepraeUlcerans # Print out the optimal global alignment and its score
  Global PairwiseAlignedFixedSubject (1 of 1)
  pattern: [1] MT-----NR--T---LSREEIRKLDRDLRILVATN...QDTPREELDRCQYSNDIDTRSGDRFVLHGRVFKN
  subject: [1] MLAVLPEKREMTECHLSDEEIRKLNRDLRILIATN...EDNSREEPIRHQRS--VGT-SA-R---SGRSICT
  score: 627





As the alignment is very long, when you type
globalAlignLepraeUlcerans, you only see the start and the end of the
alignment (see above). Therefore, we need to have a function to
print out the whole alignment (see below).




Viewing a long pairwise alignment

If you want to view a long pairwise alignment such as that between
the M. leprae and M. ulerans chorismate lyase proteins, it is
convenient to print out the alignment in blocks.

The R function “printPairwiseAlignment()” below will do this for you:

> printPairwiseAlignment <- function(alignment, chunksize=60, returnlist=FALSE)
  {
     require(Biostrings)           # This function requires the Biostrings package
     seq1aln <- pattern(alignment) # Get the alignment for the first sequence
     seq2aln <- subject(alignment) # Get the alignment for the second sequence
     alnlen  <- nchar(seq1aln)     # Find the number of columns in the alignment
     starts  <- seq(1, alnlen, by=chunksize)
     n       <- length(starts)
     seq1alnresidues <- 0
     seq2alnresidues <- 0
     for (i in 1:n) {
        chunkseq1aln <- substring(seq1aln, starts[i], starts[i]+chunksize-1)
        chunkseq2aln <- substring(seq2aln, starts[i], starts[i]+chunksize-1)
        # Find out how many gaps there are in chunkseq1aln:
        gaps1 <- countPattern("-",chunkseq1aln) # countPattern() is from Biostrings package
        # Find out how many gaps there are in chunkseq2aln:
        gaps2 <- countPattern("-",chunkseq2aln) # countPattern() is from Biostrings package
        # Calculate how many residues of the first sequence we have printed so far in the alignment:
        seq1alnresidues <- seq1alnresidues + chunksize - gaps1
        # Calculate how many residues of the second sequence we have printed so far in the alignment:
        seq2alnresidues <- seq2alnresidues + chunksize - gaps2
        if (returnlist == 'FALSE')
        {
           print(paste(chunkseq1aln,seq1alnresidues))
           print(paste(chunkseq2aln,seq2alnresidues))
           print(paste(' '))
        }
     }
     if (returnlist == 'TRUE')
     {
        vector1 <- s2c(substring(seq1aln, 1, nchar(seq1aln)))
        vector2 <- s2c(substring(seq2aln, 1, nchar(seq2aln)))
        mylist <- list(vector1, vector2)
        return(mylist)
     }
}





To use this function you first need to copy and paste this function into R.
You can then use our function printPairwiseAlignment() to print out
the alignment between the M. leprae and M. ulcerans chorismate lyase
proteins (we stored this alignment in the
globalAlignLepraeUlcerans variable, see above), in blocks of 60
alignment columns:

> printPairwiseAlignment(globalAlignLepraeUlcerans, 60)
  [1] "MT-----NR--T---LSREEIRKLDRDLRILVATNGTLTRVLNVVANEEIVVDIINQQLL 50"
  [1] "MLAVLPEKREMTECHLSDEEIRKLNRDLRILIATNGTLTRILNVLANDEIVVEIVKQQIQ 60"
  [1] " "
  [1] "DVAPKIPELENLKIGRILQRDILLKGQKSGILFVAAESLIVIDLLPTAITTYLTKTHHPI 110"
  [1] "DAAPEMDGCDHSSIGRVLRRDIVLKGRRSGIPFVAAESFIAIDLLPPEIVASLLETHRPI 120"
  [1] " "
  [1] "GEIMAASRIETYKEDAQVWIGDLPCWLADYGYWDLPKRAVGRRYRIIAGGQPVIITTEYF 170"
  [1] "GEVMAASCIETFKEEAKVWAGESPAWLELDRRRNLPPKVVGRQYRVIAEGRPVIIITEYF 180"
  [1] " "
  [1] "LRSVFQDTPREELDRCQYSNDIDTRSGDRFVLHGRVFKN 230"
  [1] "LRSVFEDNSREEPIRHQRS--VGT-SA-R---SGRSICT 233"
  [1] " "





The position in the protein of the amino acid that is at the end of
each line of the printed alignment is shown after the end of the
line. For example, the first line of the alignment above finishes
at amino acid position 50 in the M. leprae protein and also at
amino acid position 60 in the M. ulcerans protein.

Since we are printing out an alignment that contained gaps in the
first 60 alignment columns, the first 60 alignment columns ends
before the 60th amino acid in the M. leprae sequence.




Pairwise local alignment of protein sequences using the Smith-Waterman algorithm

You can use the pairwiseAlignment() function to find the optimal local alignment of two
sequences, that is the best alignment of parts (subsequences) of those sequences, by using
the “type=local” argument in pairwiseAlignment(). This uses the Smith-Waterman algorithm
for local alignment, the classic bioinformatics algorithm for finding optimal local alignments.

For example, to find the best local alignment between the M. leprae and M. ulcerans
chorismate lyase proteins, we can type:

> localAlignLepraeUlcerans <- pairwiseAlignment(lepraeseqstring, ulceransseqstring,
  substitutionMatrix = BLOSUM50, gapOpening = -2, gapExtension = -8, scoreOnly = FALSE, type="local")
> localAlignLepraeUlcerans # Print out the optimal local alignment and its score
  Local PairwiseAlignedFixedSubject (1 of 1)
  pattern:  [1] MTNRTLSREEIRKLDRDLRILVATNGTLTRVLNVV...IITTEYFLRSVFQDTPREELDRCQYSNDIDTRSG
  subject: [11] MTECHLSDEEIRKLNRDLRILIATNGTLTRILNVL...IIITEYFLRSVFEDNSREEPIRHQRSVGTSARSG
  score: 761
> printPairwiseAlignment(localAlignLepraeUlcerans, 60)
  [1] "MTNRTLSREEIRKLDRDLRILVATNGTLTRVLNVVANEEIVVDIINQQLLDVAPKIPELE 60"
  [1] "MTECHLSDEEIRKLNRDLRILIATNGTLTRILNVLANDEIVVEIVKQQIQDAAPEMDGCD 60"
  [1] " "
  [1] "NLKIGRILQRDILLKGQKSGILFVAAESLIVIDLLPTAITTYLTKTHHPIGEIMAASRIE 120"
  [1] "HSSIGRVLRRDIVLKGRRSGIPFVAAESFIAIDLLPPEIVASLLETHRPIGEVMAASCIE 120"
  [1] " "
  [1] "TYKEDAQVWIGDLPCWLADYGYWDLPKRAVGRRYRIIAGGQPVIITTEYFLRSVFQDTPR 180"
  [1] "TFKEEAKVWAGESPAWLELDRRRNLPPKVVGRQYRVIAEGRPVIIITEYFLRSVFEDNSR 180"
  [1] " "
  [1] "EELDRCQYSNDIDTRSG 240"
  [1] "EEPIRHQRSVGTSARSG 240"
  [1] " "





We see that the optimal local alignment is quite similar to the optimal global alignment in this case,
except that it excludes a short region of poorly aligned sequence at the start and at the ends of the
two proteins.




Calculating the statistical significance of a pairwise global alignment

We have seen that when we align the ‘PAWHEAE’ and ‘HEAGAWGHEE’
protein sequences, they have some similarity, and the score for
their optimal global alignment is -5.

But is this alignment
statistically significant? In other words, is this alignment
better than we would expect between any two random proteins?

The Needleman-Wunsch alignment algorithm will produce a global
alignment even if we give it two unrelated random protein
sequences, although the alignment score would be low.

Therefore, we
should ask: is the score for our alignment better than expected
between two random sequences of the same lengths and amino acid
compositions?

It is reasonable to expect that if the alignment score is
statistically significant, then it will be higher than the scores
obtained from aligning pairs of random protein sequences that have
the same lengths and amino acid compositions as our original two
sequences.

Therefore, to assess if the score for our alignment
between the ‘PAWHEAE’ and ‘HEAGAWGHEE’ protein sequence is
statistically significant, a first step is to make some random
sequences that have the same amino acid composition and length as
one of our initial two sequences, for example, as the same amino
acid composition and length as the sequence ‘PAWHEAE’.

How can we obtain random sequences of the same amino acid
composition and length as the sequence ‘PAWHEAE’? One way is to
generate sequences using a
multinomial model for protein sequences in which the
probabilities of the different amino acids set to be equal to their
frequencies in the sequence ‘PAWHEAE’.

That is, we can generate
sequences using a multinomial model for proteins, in which the
probability of ‘P’ is set to 0.1428571 (1/7); the
probability of ‘A’ is set to 0.2857143 (2/7); the
probability of ‘W’ is set to 0.1428571 (1/7); the
probability of ‘H’ is set to 0.1428571 (1/7); and
the probabilty of ‘E’ is set to 0.2857143 (2/7),
and the probabilities of the other 15 amino acids are set to 0.

To generate a sequence with this multinomial model, we choose the
letter for each position in the sequence according to those
probabilities. This is as if we have made a roulette wheel in which
1/7*th* of the circle is taken up by a pie labelled “P”, 2/7*ths*
by a pie labelled “A”, 1/7*th* by a pie labelled “W”, 1/7*th* by a
pie labelled “H”, and 2/7*ths* by a pie labelled “E”:
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To generate a sequence using the multinomial model, we keep
spinning the arrow in the centre of the roulette wheel, and write
down the letter that the arrow stops on after each spin. To
generate a sequence that is 7 letters long, we can spin the arrow 7
times. To generate 1000 sequences that are each 7 letters long, we
can spin the arrow 7000 times, where the letters chosen form 1000
7-letter amino acid sequences.

To generate a certain number (eg.1000) random amino acid sequences of a certain
length using a multinomial model, you can use the function
generateSeqsWithMultinomialModel() below:

> generateSeqsWithMultinomialModel <- function(inputsequence, X)
  {
     # Change the input sequence into a vector of letters
     require("seqinr") # This function requires the SeqinR package.
     inputsequencevector <- s2c(inputsequence)
     # Find the frequencies of the letters in the input sequence "inputsequencevector":
     mylength <- length(inputsequencevector)
     mytable <- table(inputsequencevector)
     # Find the names of the letters in the sequence
     letters <- rownames(mytable)
     numletters <- length(letters)
     probabilities <- numeric() # Make a vector to store the probabilities of letters
     for (i in 1:numletters)
     {
        letter <- letters[i]
        count <- mytable[[i]]
        probabilities[i] <- count/mylength
     }
     # Make X random sequences using the multinomial model with probabilities "probabilities"
     seqs <- numeric(X)
     for (j in 1:X)
     {
        seq <- sample(letters, mylength, rep=TRUE, prob=probabilities) # Sample with replacement
        seq <- c2s(seq)
        seqs[j] <- seq
     }
     # Return the vector of random sequences
     return(seqs)
  }





The function generateSeqsWithMultinomialModel() generates X random sequences with a
multinomial model, where the probabilities of the different letters are set equal to their frequencies
in an input sequence, which is passed to the function as a string of characters
(eg. ‘PAWHEAE’).

The function returns X random sequences in the form of a vector which has X elements, the first
element of the vector contains the first sequence, the second element contains the second sequence,
and so on.

You will need to copy and paste this function into R before you can use it.

We can use this function to generate 1000 7-letter amino acid sequences using a multinomial
model in which the probabilities of the letters are set equal to their frequencies in ‘PAWHEAE’
(ie. probabilities 1/7 for P, 2/7 for A, 1/7 for W, 1/7 for H and 2/7 for E), by typing:

> randomseqs <- generateSeqsWithMultinomialModel('PAWHEAE',1000)
> randomseqs[1:10] # Print out the first 10 random sequences
  [1] "EHHEWEA" "EAEEEAH" "WAHAWEP" "PPAPAAW" "HEPWWAA" "APAAAAA" "EAHAPHP"
  [8] "AAPEEWE" "HEAAAAP" "EWAAPEP"





The 1000 random sequences are stored in a vector randomseqs that has 1000 elements,
each of which contains one of the random sequences.

We can then use the Needleman-Wunsch algorithm to align the
sequence ‘HEAGAWGHEE’ to one of the 1000 random sequences generated
using the multinomial model with probabilities 1/7 for P, 2/7 for A, 1/7 for W, 1/7 for H and 2/7 for E.

For example, to align ‘HEAGAWGHEE’ to the first of the 1000 random
sequences (‘EEHAAAE’), we type:

> s4 <- "HEAGAWGHEE"
> pairwiseAlignment(s4, randomseqs[1], substitutionMatrix = "BLOSUM50", gapOpening = -2,
  gapExtension = -8, scoreOnly = FALSE)
  Global PairwiseAlignedFixedSubject (1 of 1)
  pattern: [2] EAGAWGHEE
  subject: [1] EHHEW--EA
  score: -7





If we use the pairwiseAlignment() function with the argument ‘scoreOnly=TRUE’, it will just give
us the score for the alignment:

> pairwiseAlignment(s4, randomseqs[1], substitutionMatrix = "BLOSUM50", gapOpening = -2,
  gapExtension = -8, scoreOnly = TRUE)
  [1] -7





If we repeat this 1000 times, that is, for each of the 1000 random
sequences in vector randomseqs, we can get a distribution of
alignment scores expected for aligning ‘HEAGAWGHEE’ to random
sequences of the same length and (approximately the same) amino
acid composition as ‘PAWHEAE’.

We can then compare the actual score for aligning ‘PAWHEAE’ to ‘HEAGAWGHEE’ (ie. -5) to the distribution
of scores for aligning ‘HEAGAWGHEE’ to the random sequences.

> randomscores <- double(1000) # Create a numeric vector with 1000 elements
> for (i in 1:1000)
  {
     score <- pairwiseAlignment(s4, randomseqs[i], substitutionMatrix = "BLOSUM50",
       gapOpening = -2, gapExtension = -8, scoreOnly = TRUE)
     randomscores[i] <- score
  }





The code above first uses the double() function to create a numeric
vector randomscores for storing real numbers (ie. not integers),
with 1000 elements. This will be used to store the alignment scores
for 1000 alignments between ‘HEAGAWGHEE’ and the 1000 different
random sequences generated using the multinomial model.

The ‘for loop’ takes each of the 1000 different random sequences, aligns
each one to ‘HEAGAWGHEE’, and stores the 1000 alignment scores in
the randomscores vector.

Once we have run the ‘for loop’, we can make a histogram plot of the 1000 scores
in vector randomscores by typing:

> hist(randomscores, col="red") # Draw a red histogram
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We can see from the histogram that quite a lot of the random
sequences seem to have higher alignment scores than -5 when aligned
to ‘HEAGAWGHEE’ (where -5 is the alignment score for ‘PAWHEAE’ and
‘HEAGAWGHEE’).

We can use the vector randomscores of scores for 1000 alignments
of random sequences to ‘HEAGAWGHEE’ to calculate the probability of
getting a score as large as the real alignment score for ‘PAWHEAE’
and ‘HEAGAWGHEE’ (ie. -5) by chance.

> sum(randomscores >= -5)
[1] 266





We see that 266 of the 1000 alignments of random sequences to
‘HEAGAWGHEE’ had alignment scores that were equal to or greater
than -5. Thus, we can estimate that the probability of getting a
score as large as the real alignment score by chance is (266/1000
=) 0.266. In other words, we can calculate a P-value of 0.266.
This probability or P-value is quite high (almost 30%, or 1 in
3), so we can conclude that it is quite probable that we could get
an alignment score as high as -5 by chance alone. This indicates
that the sequences ‘HEAGAWGHEE’ and ‘PAWHEAE’ are not more similar
than any two random sequences, and so they are probably not related
sequences.

Another way of saying this is that the P-value that we calculated
is high (0.266), and as a result we conclude that the alignment
score for the sequences ‘HEAGAWGHEE’ and ‘PAWHEAE’ is not
statistically significant. Generally, if the P-value that we
calculate for an alignment of two sequences is >0.05, we conclude
that the alignment score is not statistically significant, and that
the sequences are probably not related. On the other hand, if the
P-value is less than or equal to 0.05, we conclude that the alignment score is
statistically significant, and the sequences are very probably
related (homologous).




Summary

In this practical, you will have learnt to use the following R
functions:


	data() for reading in data that comes with an R package

	double() for creating a numeric vector for storing real
(non-integer) numbers

	toupper() for converting a string of characters from lowercase
to uppercase



All of these functions belong to the standard installation of R.

You have also learnt the following R functions that belong to the
bioinformatics packages:


	nucleotideSubstitutionMatrix() in the Biostrings package for
making a nucleotide scoring matrix

	pairwiseAlignment() in the Biostrings package for making a
global alignment between two sequences

	c2s() in the SeqinR package for converting a sequence stored in
a vector to a string of characters






Links and Further Reading

Some links are included here for further reading.

For background reading on sequence alignment, it is recommended to
read Chapter 3 of
Introduction to Computational Genomics: a case studies approach
by Cristianini and Hahn (Cambridge University Press;
www.computational-genomics.net/book/ [http://www.computational-genomics.net/book/]).

For more in-depth information and more examples on using the SeqinR
package for sequence analysis, look at the SeqinR documentation,
http://pbil.univ-lyon1.fr/software/seqinr/doc.php?lang=eng.

There is also a very nice chapter on “Analyzing Sequences”, which
includes examples of using SeqinR and Biostrings for sequence analysis, as well as details
on how to implement algorithms such as Needleman-Wunsch and Smith-Waterman in R yourself, in the
book Applied statistics for bioinformatics using R by Krijnen
(available online at
cran.r-project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf [http://cran.r-project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf]).

For a more in-depth introduction to R, a good online tutorial is
available on the “Kickstarting R” website,
cran.r-project.org/doc/contrib/Lemon-kickstart [http://cran.r-project.org/doc/contrib/Lemon-kickstart/].

There is another nice (slightly more in-depth) tutorial to R
available on the “Introduction to R” website,
cran.r-project.org/doc/manuals/R-intro.html [http://cran.r-project.org/doc/manuals/R-intro.html].

For more information on and examples using the Biostrings package,
see the Biostrings documentation at
http://www.bioconductor.org/packages/release/bioc/html/Biostrings.html.
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Exercises

Answer the following questions, using the R package. For each
question, please record your answer, and what you typed into R to
get this answer.

Model answers to the exercises are given in
Answers to the exercises on Sequence Alignment.


	Q1. Download FASTA-format files of the Brugia malayi Vab-3 protein (UniProt accession A8PZ80) and the Loa loa Vab-3 protein (UniProt accession E1FTG0) sequences from UniProt.

	Note: the vab-3 gene of Brugia malayi and the vab-3 gene of Loa loa are related genes that
control eye development in these two species.
Brugia malayi and Loa loa are both parasitic nematode worms, which both
cause filariasis [http://www.who.int/topics/filariasis/en/], which is classified
by the WHO as a neglected tropical disease.

	Q2. What is the alignment score for the optimal global alignment between the Brugia malayi Vab-3 protein and the Loa loa Vab-3 protein, when you use the BLOSUM50 scoring matrix, a gap opening penalty of -10 and a gap extension penalty of -0.5?

	Note: to specify a gap opening penalty of -10 and a gap extension penalty of -0.5,
set the “gapOpening” argument to -9.5, and the “gapExtension” penalty to -0.5 in the
pairwiseAlignment() function.

	Q3. Use the printPairwiseAlignment() function to view the optimal global alignment between Brugia malayi Vab-3 protein and the Loa loa Vab-3 protein, using the BLOSUM50 scoring matrix, a gap opening penalty of -10 and a gap extension penalty of -0.5.

	Do you see any regions where the alignment is very good (lots of identities and few gaps)?

	Q4. What global alignment score do you get for the two Vab-3 proteins, when you use the BLOSUM62 alignment matrix, a gap opening penalty of -10 and a gap extension penalty of -0.5?

	Which scoring matrix do you think is more appropriate for using for this pair of proteins: BLOSUM50 or BLOSUM62?

	Q5. What is the statistical significance of the optimal global alignment for the Brugia malayi and Loa loa Vab-3 proteins made using the BLOSUM50 scoring matrix, with a gap opening penalty of -10 and a gap extension penalty of -0.5?

	In other words, what is the probability of getting a score as large
as the real alignment score for Vab-3 by chance?

	Q6. What is the optimal global alignment score between the Brugia malayi Vab-6 protein and the Mycobacterium leprae chorismate lyase protein?

	Is the alignment score statistically significant (what is the P- value?)?
Does this surprise you?









          

      

      

    

  

    
      
          
            
  
Multiple Alignment and Phylogenetic trees


Retrieving a list of sequences from UniProt

In previous chapters, you learnt how to search for DNA or protein sequences
in sequence databases such as the NCBI database and UniProt, using the
SeqinR package (see chapter3.html).

For example, in the previous chapter),
you learnt how to retrieve a single sequence from UniProt.

Oftentimes, it is useful to retrieve several sequences from UniProt at once
if you have a list of UniProt accessions. The R function “retrieveseqs()”
below is useful for this purpose:

> retrieveseqs <- function(seqnames,acnucdb)
  {
     myseqs <- list()   # Make a list to store the sequences
     require("seqinr")  # This function requires the SeqinR R package
     choosebank(acnucdb)
     for (i in 1:length(seqnames))
     {
        seqname <- seqnames[i]
        print(paste("Retrieving sequence",seqname,"..."))
        queryname <- "query2"
        query <- paste("AC=",seqname,sep="")
        query(`queryname`,`query`)
        seq <- getSequence(query2$req[[1]]) # Makes a vector "seq" containing the sequence
        myseqs[[i]] <- seq
     }
     closebank()
     return(myseqs)
  }





You need to cut and paste this function into R to use it.
As its input, you need to give it the function a vector containing
the accessions for the sequences you wish to retrieve, as well as the name of the ACNUC
sub-database that the sequences should be retrieved from. In this case, we want to
retrieve sequences from UniProt, so the sequences should be in the “swissprot” ACNUC sub-database.

The retrieveseqs() function returns a list variable, in which
each element is a vector containing one of the sequences.

For example, to retrieve the protein sequences for UniProt
accessions P06747, P0C569, O56773 and Q5VKP1 (the accessions for rabies virus phosphoprotein,  Mokola
virus phosphoprotein, Lagos bat virus phosphoprotein and Western Caucasian bat virus phosphoprotein,
respectively), you can type:

> seqnames <- c("P06747", "P0C569", "O56773", "Q5VKP1")  # Make a vector containing the names of the sequences
> seqs <- retrieveseqs(seqnames,"swissprot")             # Retrieve the sequences and store them in list variable "seqs"
> length(seqs)                                 # Print out the number of sequences retrieved
 [1] 4
> seq1 <- seqs[[1]]                            # Get the first sequence
> seq1[1:20]                                   # Print out the first 20 letters of the first sequence
 [1] "M" "S" "K" "I" "F" "V" "N" "P" "S" "A" "I" "R" "A" "G" "L" "A" "D" "L" "E"
 [20] "M"
> seq2 <- seqs[[2]]                            # Get the second sequence
> seq2[1:20]                                   # Print out the first 20 letters of the second sequence
 [1] "M" "S" "K" "D" "L" "V" "H" "P" "S" "L" "I" "R" "A" "G" "I" "V" "E" "L" "E"
 [20] "M"





The commands above use the function retrieveseqs() to retrieve two UniProt sequences.
The sequences are returned in a list variable seqs. To access the elements in an R list variable,
you need to use double square brackets. Therefore, the second element of the list
variable is accessed by typing seqs[[2]]. Each element of the list variable seqs contains a
vector which stores one of the sequences.

Rabies virus is the virus responsible for rabies [http://www.who.int/rabies/en/], which is classified by the WHO as a neglected tropical disease. Mokola virus and rabies virus are closely related viruses that both belong to a group of viruses called the Lyssaviruses. Mokola virus causes a rabies-like infection in mammals including humans.

Once you have retrieved the sequences using retrieveseqs(), you can then use the function
write.fasta() from the SeqinR package to write the sequences to a FASTA-format file. As its arguments
(inputs), the write.fasta() function takes the list variable containing the sequences, and a vector
containing the names of the sequences, and the name that you want to give to the FASTA-format
file. For example:

> write.fasta(seqs, seqnames, file="phosphoproteins.fasta")





The command above will write the sequences in list variable seqs
to a FASTA-format file called “phosphoproteins.fasta” in the “My Documents”
folder on your computer.




Installing the CLUSTAL multiple alignment software

A common task in bioinformatics is to download a set of related sequences from a database, and then
to align those sequences using multiple alignment software. This is the first step in most phylogenetic analyses.

One commonly used multiple alignment software package is CLUSTAL. In order to build an alignment
using CLUSTAL, you first need to install the CLUSTAL program on your computer.

To install CLUSTAL on your computer, you need to follow these steps:


	Go to the http://www.clustal.org/download/current/ website.

	Right-click on the link to file clustalx-Z.Z.Z-win.msi (where Z represents some number)
and choose “Save link as...” and then save the file in your “My Documents” folder.

	Once the file has downloaded, double-click on the icon for file clustalx-Z.Z.Z-win.msi (where Z is some number).

	You will be asked “Are you sure you want to run this software?” Press “Run”.

	You will then see “Welcome to the ClustalX2 setup wizard”. Press “Next”.

	You will be asked where to install ClustalX2. Select your “My Documents” folder.

	Keep pressing ‘yes’ or ‘Next’ until the screen says “Completing the ClustalX2 setup wizard”. Then press “Finish”.



CLUSTAL should now be installed on your computer.




Creating a multiple alignment of protein, DNA or mRNA sequences using CLUSTAL

Once you have installed CLUSTAL, you can now align your sequences using CLUSTAL by following these steps:


	Go to the “Start” menu on the bottom left of your Windows screen. Select “All Programs” from the menu, then select
“ClustalX2” from the menu that appears. This will start up CLUSTAL.

	The CLUSTAL window should appear. To load the DNA or protein sequences that you want to align into CLUSTAL, go to the
CLUSTAL “File” menu, and choose “Load sequences”.

	Select the FASTA-format file containing your sequences (eg. phosphoproteins.fasta) to load it into CLUSTAL.

	This should read the sequences into CLUSTAL. They have not been aligned yet, but will be displayed in the CLUSTAL window.

	You can use the scrollbar on the right to scroll down and look at all the sequences. You can use the scrollbar on the
bottom to scroll from left to right, and look along the length of the sequences.

	Before you align the sequences using CLUSTAL, you need to tell CLUSTAL to make the output alignment file in
PHYLIP alignment format, so that you can read it into R. To do this, go to the “Alignment” menu in CLUSTAL, choose
“Output Format Options”. A form will appear, and in this form you should select “PHYLIP format” and deselect “CLUSTAL format”,
and then press “OK”.

	To now align the sequences using CLUSTAL, go to the CLUSTAL “Alignment” menu, and choose “Do Complete Alignment”.

	A menu box will pop up, asking you where to save the output guide-tree file (eg. “phosphoproteins.dnd”) and the output
alignment file (called “phosphoproteins.phy”). You should choose to save them in your “My Documents” folder (so that you can
easily read them into R from “My Documents” at a later stage).

	CLUSTAL will now align the sequences. This will take a couple of minutes (eg. 2-5 minutes). You will see that at the bottom
of the CLUSTAL window, it tells you which pair of sequences it is aligning at a particular point in time. If the numbers
keep changing, it means that CLUSTAL is still working away, and the alignment is not finished yet. Be patient!



Once CLUSTAL has finished making the alignment, it will be displayed in the CLUSTAL window. For example, here
is the CLUSTAL alignment for rabies virus phosphoprotein, Mokola
virus phosphoprotein, and Lagos bat virus phosphoprotein:

[image: image8]

The alignment displayed in CLUSTAL has a row for each of your sequences. CLUSTAL colours sets of chemically similar amino acids
in similar colours. For example, tyrosine (Y) is coloured blue-green, while the chemically similar amino acid phenylalanine
(F) is coloured blue. You can scroll to the right and left along the alignment using the scrollbar at the bottom of the Jalview
window.

Below the alignment, you can see a grey plot, showing the level of conservation at each point of the sequence.
This shows a high grey bar if the conservation in a region is high (there is high percent identity between the sequence),
and a low grey bar if it is low (there is low percent identity). This can give you an idea of which are the best conserved
regions of the alginment.

For example, for the alignment of the four virus phosphoproteins, we can see that the region in alignment columns 35
to 45 approximately is very well conserved, while the region in alignment columns 60 to 70 is poorly conserved.

The CLUSTAL alignment will have been saved in a file in your “My Documents” folder called “something.phy” (eg. phosphoproteins.phy).
This is a PHYLIP-format alignment file, which you can now read into R for further analysis.




Reading a multiple alignment file into R

To read a sequence alignment into R from a file, you can use the read.alignment() function in the SeqinR package. For
example, to read in the multiple sequence alignment of the virus phosphoproteins into R, we type:

> virusaln  <- read.alignment(file = "phosphoproteins.phy", format = "phylip")





The virusaln variable is a list variable that stores the alignment.

An R list variable can have named elements, and you can access the named elements of a list
variable by typing the variable name, followed by “$”, followed by the name of the named element.

The list variable virusaln has named elements “nb”, “nam”, “seq”, and “com”.

In fact, the named element “seq” contains the alignment, which you can view by typing:

> virusaln$seq
  [[1]]
  [1] "mskdlvhpsliragivelemaeettdlinrtiesnqahlqgeplyvdslpedmsrlriedksrrtk...
  [[2]]
  [1] "mskglihpsairsglvdlemaeetvdlvhknladsqahlqgeplnvdslpedmrkmrltnapsere...
  [[3]]
  [1] "mskifvnpsairagladlemaeetvdlinrniednqahlqgepievdnlpedmgrlhlddgkspnp...
  [[4]]
  [1] "mskslihpsdlragladiemadetvdlvyknlsegqahlqgepfdikdlpegvsklqisdnvrsdt...





Only the first part of the alignment stored in virusaln$seq is shown here, as
it is very long.




Viewing a long multiple alignment

If you want to view a long multiple alignment, it is convenient to view the multiple alignment in blocks.

The R function “printMultipleAlignment()” below will do this for you:

> printMultipleAlignment <- function(alignment, chunksize=60)
  {
     # this function requires the Biostrings package
     require("Biostrings")
     # find the number of sequences in the alignment
     numseqs <- alignment$nb
     # find the length of the alignment
     alignmentlen <- nchar(alignment$seq[[1]])
     starts <- seq(1, alignmentlen, by=chunksize)
     n <- length(starts)
     # get the alignment for each of the sequences:
     aln <- vector()
     lettersprinted <- vector()
     for (j in 1:numseqs)
     {
        alignmentj <- alignment$seq[[j]]
        aln[j] <- alignmentj
        lettersprinted[j] <- 0
     }
     # print out the alignment in blocks of 'chunksize' columns:
     for (i in 1:n) { # for each of n chunks
        for (j in 1:numseqs)
        {
           alnj <- aln[j]
           chunkseqjaln <- substring(alnj, starts[i], starts[i]+chunksize-1)
           chunkseqjaln <- toupper(chunkseqjaln)
           # Find out how many gaps there are in chunkseqjaln:
           gapsj <- countPattern("-",chunkseqjaln) # countPattern() is from Biostrings package
           # Calculate how many residues of the first sequence we have printed so far in the alignment:
           lettersprinted[j] <- lettersprinted[j] + chunksize - gapsj
           print(paste(chunkseqjaln,lettersprinted[j]))
        }
        print(paste(' '))
     }
  }





As its inputs, the function “printMultipleAlignment()” takes the input alignment, and the number of columns
to print out in each block.

For example, to print out the multiple alignment of virus phosphoproteins (which we stored in variable
virusaln, see above) in blocks of 60 columns, we type:

> printMultipleAlignment(virusaln, 60)
  [1] "MSKDLVHPSLIRAGIVELEMAEETTDLINRTIESNQAHLQGEPLYVDSLPEDMSRLRIED 60"
  [1] "MSKGLIHPSAIRSGLVDLEMAEETVDLVHKNLADSQAHLQGEPLNVDSLPEDMRKMRLTN 60"
  [1] "MSKIFVNPSAIRAGLADLEMAEETVDLINRNIEDNQAHLQGEPIEVDNLPEDMGRLHLDD 60"
  [1] "MSKSLIHPSDLRAGLADIEMADETVDLVYKNLSEGQAHLQGEPFDIKDLPEGVSKLQISD 60"
  [1] " "
  [1] "KSRRTKTEEEERDEGSSEEDNYLSEGQDPLIPFQNFLDEIGARAVKRLKTGEGFFRVWSA 120"
  [1] "APSEREIIEEDEEEYSSEDEYYLSQGQDPMVPFQNFLDELGTQIVRRMKSGDGFFKIWSA 120"
  [1] "GKSPNPGEMAKVGEGKYREDFQMDEGEDPSLLFQSYLDNVGVQIVRQIRSGERFLKIWSQ 120"
  [1] "NVRSDTSPNEYSDEDDEEGEDEYEEVYDPVSAFQDFLDETGSYLISKLKKGEKIKKTWSE 120"
  [1] " "
  [1] "LSDDIKGYVSTNIM-TSGERDTKSIQIQTEPTASVSSGNESRHDSESMHDPNDKKDHTPD 179"
  [1] "ASEDIKGYVLSTFM-KPETQATVSKPTQTDSLSVPRPSQGYTSVPRDKPSNSESQGGGVK 179"
  [1] "TVEEIISYVAVNFP-NPPGKSSEDKSTQTTGRELKKETTPTPSQRESQSSKARMAAQTAS 179"
  [1] "VSRVIYSYVMSNFPPRPPKPTTKDIAVQADLKKPNEIQKISEHKSKSEPSPREPVVEMHK 180"
  [1] " "
  [1] "HDVVPDIESSTDKGEIRDIEGEVAHQVAESFSKKYKFPSRSSGIFLWNFEQLKMNLDDIV 239"
  [1] "PKKVQKSEWTRDTDEISDIEGEVAHQVAESFSKKYKFPSRSSGIFLWNFEQLKMNLDDIV 239"
  [1] "GPPALEWSATNEEDDLS-VEAEIAHQIAESFSKKYKFPSRSSGILLYNFEQLKMNLDDIV 238"
  [1] "HATLE-----NPEDDEGALESEIAHQVAESYSKKYKFPSKSSGIFLWNFEQLKMNLDDIV 235"
  [1] " "
  [1] "KAAMNVPGVERIAEKGGKLPLRCILGFVALDSSKRFRLLADNDKVARLIQEDINSYMARL 299"
  [1] "KTSMNVPGVDKIAEKGGKLPLRCILGFVSLDSSKRFRLLADTDKVARLMQDDIHNYMTRI 299"
  [1] "KEAKNVPGVTRLARDGSKLPLRCVLGWVALANSKKFQLLVESNKLSKIMQDDLNRYTSC- 297"
  [1] "QVARGVPGISQIVERGGKLPLRCMLGYVGLETSKRFRSLVNQDKLCKLMQEDLNAYSVSS 295"
  [1] " "
  [1] "EEAE-- 357"
  [1] "EEIDHN 359"
  [1] "------ 351"
  [1] "NN---- 351"
  [1] " "








Discarding very poorly conserved regions from an alignment

It is often a good idea to discard very poorly conserved regions from a mulitple
alignment before building a phylogenetic tree, as the very poorly conserved regions are
likely to be regions that are either not homologous between the sequences being considered
(and so do not add any phylogenetic signal), or are homologous but are so diverged that
they are very difficult to align accurately (and so may add noise to the phylogenetic analysis,
and decrease the accuracy of the inferred tree).

To discard very poorly conserved regions from a multiple alignment, you can use the following
R function, “cleanAlignment()”:

> cleanAlignment <- function(alignment, minpcnongap, minpcid)
  {
     # make a copy of the alignment to store the new alignment in:
     newalignment <- alignment
     # find the number of sequences in the alignment
     numseqs <- alignment$nb
     # empty the alignment in "newalignment")
     for (j in 1:numseqs) { newalignment$seq[[j]] <- "" }
     # find the length of the alignment
     alignmentlen <- nchar(alignment$seq[[1]])
     # look at each column of the alignment in turn:
     for (i in 1:alignmentlen)
     {
        # see what percent of the letters in this column are non-gaps:
        nongap <- 0
        for (j in 1:numseqs)
        {
           seqj <- alignment$seq[[j]]
           letterij <- substr(seqj,i,i)
           if (letterij != "-") { nongap <- nongap + 1}
        }
        pcnongap <- (nongap*100)/numseqs
        # Only consider this column if at least minpcnongap % of the letters are not gaps:
        if (pcnongap >= minpcnongap)
        {
           # see what percent of the pairs of letters in this column are identical:
           numpairs <- 0; numid <- 0
           # find the letters in all of the sequences in this column:
           for (j in 1:(numseqs-1))
           {
              seqj <- alignment$seq[[j]]
              letterij <- substr(seqj,i,i)
              for (k in (j+1):numseqs)
              {
                 seqk <- alignment$seq[[k]]
                 letterkj <- substr(seqk,i,i)
                 if (letterij != "-" && letterkj != "-")
                 {
                    numpairs <- numpairs + 1
                    if (letterij == letterkj) { numid <- numid + 1}
                 }
              }
           }
           pcid <- (numid*100)/(numpairs)
           # Only consider this column if at least %minpcid of the pairs of letters are identical:
           if (pcid >= minpcid)
           {
               for (j in 1:numseqs)
               {
                  seqj <- alignment$seq[[j]]
                  letterij <- substr(seqj,i,i)
                  newalignmentj <- newalignment$seq[[j]]
                  newalignmentj <- paste(newalignmentj,letterij,sep="")
                  newalignment$seq[[j]] <- newalignmentj
               }
           }
        }
     }
     return(newalignment)
  }





The function cleanAlignment() takes three arguments (inputs): the input alignment; the minimum percent of
letters in an alignment column that must be non-gap characters for the column to be kept; and the
minimum percent of pairs of letters in an alignment column that must be identical for the column to be kept.

For example, if we have a column with letters “T”, “A”, “T”, “-” (in four sequences), then 75% of the letters are
non-gap characters; and the pairs of letters are “T,A”, “T,T”, and “A,T”, and 33% of the pairs of letters are identical.

We can use the function cleanAlignment() to discard the very poorly aligned columns from a multiple alignment.

For example, if you look at the multiple alignment for the virus phosphoprotein sequences (which we
printed out using function printMultipleAlignment(), see above), we can see that the last few columns are
poorly aligned (contain many gaps and mismatches), and probably add noise to the phylogenetic analysis.

Therefore, to filter out the well conserved columns of the alignment, and discard the very poorly conserved
columns, we can type:

> cleanedvirusaln <- cleanAlignment(virusaln, 30, 30)





In this case, we required that at least 30% of letters in a column are not gap characters for that column to be kept,
and that at least 30% of pairs of letters in an alignment column must be identical for the column to be kept.

We can print out the filtered alignment by typing:

> printMultipleAlignment(cleanedvirusaln)
  [1] "MSKLVHPSIRAGIVELEMAEETTDLIRTIQAHLQGEPVDLPEDMRLIDREEEDEGDPFQF 60"
  [1] "MSKLIHPSIRSGLVDLEMAEETVDLVKNLQAHLQGEPVDLPEDMKMLNSEEEEQGDPFQF 60"
  [1] "MSKFVNPSIRAGLADLEMAEETVDLIRNIQAHLQGEPVDLPEDMRLLDSAERDEGDPFQY 60"
  [1] "MSKLIHPSLRAGLADIEMADETVDLVKNLQAHLQGEPIKLPEGVKLIDREEEEEVDPFQF 60"
  [1] " "
  [1] "LDEGVKGEFRWSSIGYVNIMSTSIQTHSDESGEDEEVAHQVAESFSKKYKFPSRSSGIFL 120"
  [1] "LDEGVKGDFKWSSIGYVTFMPTSKQTSDSETDEDEEVAHQVAESFSKKYKFPSRSSGIFL 120"
  [1] "LDNGVRGEFKWSVISYVNFPPSDKQTSSSSTDD-EEIAHQIAESFSKKYKFPSRSSGILL 119"
  [1] "LDEGIKGEIKWSSISYVNFPPTDIQAHSS--DDAEEIAHQVAESYSKKYKFPSKSSGIFL 118"
  [1] " "
  [1] "WNFEQLKMNLDDIVKANVPGVIAEGGKLPLRCLGVLSKRFRLLADKVRLIQEDINYEE 180"
  [1] "WNFEQLKMNLDDIVKSNVPGVIAEGGKLPLRCLGVLSKRFRLLADKVRLMQDDIHYEE 180"
  [1] "YNFEQLKMNLDDIVKANVPGVLARGSKLPLRCLGVLSKKFQLLVNKLKIMQDDLNY-- 177"
  [1] "WNFEQLKMNLDDIVQAGVPGIIVEGGKLPLRCLGVLSKRFRSLVDKLKLMQEDLNYNN 178"
  [1] " "





The filtered alignment is shorter, but is missing some of the poorly conserved regions of the original
alignment.

Note that it is not a good idea to filter out too much of your alignment, as if you are
left with few columns in your filtered alignment, you will be basing your phylogenetic tree
upon a very short alignment (little data), and so the tree may be unreliable. Therefore, you
need to achieve a balance between discarding the dodgy (poorly aligned) parts of your alignment,
and retaining enough columns of the alignment that you will have enough data to based your tree upon.




Calculating genetic distances between protein sequences

A common first step in performing a phylogenetic analysis is to calculate the pairwise genetic distances between sequences. The
genetic distance is an estimate of the divergence between two sequences, and is usually measured in quantity of evolutionary
change (an estimate of the number of mutations that have occurred since the two sequences shared a common ancestor).

We can calculate the genetic distances between protein sequences using the “dist.alignment()” function in the SeqinR package. The
dist.alignment() function takes a multiple alignment as input. Based on the multiple alignment that you give it, dist.alignment()
calculates the genetic distance between each pair of proteins in the multiple alignment. For example, to calculate genetic distances
between the virus phosphoproteins based on the multiple sequence alignment stored in virusaln, we type:

> virusdist <- dist.alignment(virusaln)                            # Calculate the genetic distances
> virusdist                                                        # Print out the genetic distance matrix
                P0C569     O56773     P06747
  O56773      0.4142670
  P06747      0.4678196  0.4714045
  Q5VKP1      0.4828127  0.5067117  0.5034130





The genetic distance matrix above shows the genetic distance between each pair of proteins.

The sequences are referred to by their UniProt accessions. If you remember from above, P06747
is rabies virus phosphoprotein, P0C569 is Mokola virus phosphoprotein, O56773 is Lagos bat
virus phosphoprotein and Q5VKP1 is Western Caucasian bat virus phosphoprotein.

Based on the genetic distance matrix above, we can see that the genetic distance between
Lagos bat virus phosphoprotein (O56773) and Mokola virus phosphoprotein (P0C569) is smallest (about 0.414).

Similarly, the genetic distance between Western Caucasian bat virus phosphoprotein (Q5VKP1) and
Lagos bat virus phosphoprotein (O56773) is the biggest (about 0.507).

The larger the genetic distance between two sequences, the more amino acid changes or indels that have occurred since
they shared a common ancestor, and the longer ago their common ancestor probably lived.




Calculating genetic distances between DNA/mRNA sequences

Just like for protein sequences, you can calculate genetic distances between DNA (or mRNA) sequences
based on an alignment of the sequences.

For example, the NCBI accession AF049118 contains mRNA sequence for Mokola virus phosphoprotein,
RefSeq AF049114 contains mRNA sequence for Mokola virus phosphoprotein, and AF049119 contains
the mRNA sequence for Lagos bat virus phosphoprotein, while AF049115 contains the mRNA
sequence for Duvenhage virus phosphoprotein.

To retrieve these sequences from the NCBI database, we can search the ACNUC “genbank” sub-database
(since these are nucleotide sequences), by typing:

> seqnames <- c("AF049118", "AF049114", "AF049119", "AF049115")  # Make a vector containing the names of the sequences
> seqs <- retrieveseqs(seqnames,"genbank")                       # Retrieve the sequences and store them in list variable "seqs"





We can then write out the sequences to a FASTA-format file by typing:

> write.fasta(seqs, seqnames, file="virusmRNA.fasta")





We can then use CLUSTAL to create a PHYLIP-format alignment of the sequences, and store it in the
alignment file “virusmRNA.phy”. This picture shows part of the alignment:

[image: image12]

We can then read the alignment into R:

> virusmRNAaln  <- read.alignment(file = "virusmRNA.phy", format = "phylip")





We saw above that the function dist.alignment() can be used to calculate a genetic
distance matrix based on a protein sequence alignment.

You can calculate a genetic distance for DNA or mRNA sequences
using the dist.dna() function in the Ape R package.
dist.dna()</tt> takes a multiple alignment
of DNA or mRNA sequences as its input, and calculates the genetic distance between each pair of DNA sequences
in the multiple alignment.

The dist.dna() function requires the input alignment to be in a
special format known as “DNAbin” format, so we must use the as.DNAbin() function to convert
our DNA alignment into this format before using the dist.dna() function.

For example, to calculate the genetic distance between each pair of mRNA sequences for the virus
phosphoproteins, we type:

> virusmRNAalnbin <- as.DNAbin(virusmRNAaln) # Convert the alignment to "DNAbin" format
> virusmRNAdist <- dist.dna(virusmRNAalnbin) # Calculate the genetic distance matrix
> virusmRNAdist                              # Print out the genetic distance matrix
            AF049114  AF049119  AF049118
  AF049119 0.3400576
  AF049118 0.5235850 0.5637372
  AF049115 0.6854129 0.6852311 0.7656023








Building an unrooted phylogenetic tree for protein sequences

Once we have a distance matrix that gives the pairwise distances between all our protein sequences,
we can build a phylogenetic tree based on that distance matrix. One method for using this is the
neighbour-joining algorithm.

You can build a phylogenetic tree using the neighbour-joining algorithm with the the
Ape R package. First you will need to install the “ape” package (see instructions on how to
install R packages).

The following R function “unrootedNJtree()” builds a phylogenetic tree based on an alignment of
sequences, using the neighbour-joining algorithm, using functions from the “ape” package.

The “unrootedNJtree()” function takes an alignment of sequences its
input, calculates pairwise distances between the sequences based on the alignment, and then builds
a phylogenetic tree based on the pairwise distances. It returns the phylogenetic tree, and also
makes a picture of that tree:

> unrootedNJtree <- function(alignment,type)
  {
     # this function requires the ape and seqinR packages:
     require("ape")
     require("seqinr")
     # define a function for making a tree:
     makemytree <- function(alignmentmat)
     {
        alignment <- ape::as.alignment(alignmentmat)
        if      (type == "protein")
        {
           mydist <- dist.alignment(alignment)
        }
        else if (type == "DNA")
        {
           alignmentbin <- as.DNAbin(alignment)
           mydist <- dist.dna(alignmentbin)
        }
        mytree <- nj(mydist)
        mytree <- makeLabel(mytree, space="") # get rid of spaces in tip names.
        return(mytree)
     }
     # infer a tree
     mymat  <- as.matrix.alignment(alignment)
     mytree <- makemytree(mymat)
     # bootstrap the tree
     myboot <- boot.phylo(mytree, mymat, makemytree)
     # plot the tree:
     plot.phylo(mytree,type="u")   # plot the unrooted phylogenetic tree
     nodelabels(myboot,cex=0.7)    # plot the bootstrap values
     mytree$node.label <- myboot   # make the bootstrap values be the node labels
     return(mytree)
  }





To use the function to make a phylogenetic tree, you must first copy and paste the function into R.
You can then use it to make a tree, for example of the virus phosphoproteins, based on the sequence
alignment:

> virusalntree <- unrootedNJtree(virusaln,type="protein")
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Note that you need to specify that the type of sequences that you are using are protein sequences
when you use unrootedNJtree(), by setting “type=protein”.

We can see that Q5VKP1 (Western Caucasian bat virus phosphoprotein) and P06747
(rabies virus phosphoprotein) have been grouped together in the tree, and that
O56773 (Lagos bat virus phosphoprotein) and P0C569 (Mokola virus phosphoprotein) are grouped together in the tree.

This is consistent with what we saw above in the genetic distance matrix, which showed that
the genetic distance between Lagos bat virus phosphoprotein (O56773) and Mokola virus phosphoprotein
(P0C569) is relatively small.

The numbers in blue boxes are bootstrap values for the nodes in the tree.

A bootstrap value for a particular node in the tree gives an idea of the confidence that we have
in the clade (group) defined by that node in the tree. If a node has a high bootstrap value (near 100%) then we are
very confident that the clade defined by the node is correct, while if it has a low bootstrap value (near 0%) then we
are not so confident.

Note that the fact that a bootstrap value for a node is high does not necessarily
guarantee that the clade defined by the node is correct, but just tells us that it is quite likely that it is correct.

The bootstrap values are calculated by making many (for example,
100) random “resamples” of the alignment that the phylogenetic tree was based upon. Each “resample” of the alignment consists of a
certain number x (eg. 200) of randomly sampled columns from the alignment. Each “resample” of the alignment (eg. 200 randomly
sampled columns) forms a sort of fake alignment of its own, and a phylogenetic tree can be based upon the “resample”. We can make 100
random resamples of the alignment, and build 100 phylogenetic trees based on the 100 resamples. These 100 trees are known as the
“bootstrap trees”. For each clade (grouping) that we see in our original phylogenetic tree, we can count in how many of the 100 bootstrap
trees it appears. This is known as the “bootstrap value” for the clade in our original phylogenetic tree.

For example, if we calculate 100 random resamples of the virus phosphoprotein alignment, and build 100 phylogenetic trees based on these
resamples, we can calculate the bootstrap values for each clade in the virus phosphoprotein phylogenetic tree.

In this case, the bootstrap value for the node defining the clade containing Q5VKP1 (Western Caucasian bat virus phosphoprotein)
and P06747 (rabies virus phosphoprotein) is 25%, while the bootstrap value for node defining the clade containg of
Lagos bat virus phosphoprotein (O56773) and Mokola virus phosphoprotein
(P0C569) is 100%. The bootstrap values for each of these clades is the percent of
100 bootstrap trees that the clade appears in.

Therefore, we are very confident that Lagos bat virus and Mokola virus phosphoproteins
should be grouped together in the tree. However, we are not so confident that the Western Caucasian
bat virus and rabies virus phosphoproteins should be grouped together.

The lengths of the branches in the plot of the tree are proportional to the amount of evolutionary change
(estimated number of mutations) along the branches.

In this case, the branches leading to Lagos bat virus phosphoprotein (O56773) and Mokola virus phosphoprotein
(P0C569) from the node representing their common ancestor are slightly shorter than the branches leading to the
Western Caucasian bat virus (Q5VKP1) and rabies virus (P06747) phosphoproteins from the node representing their common ancestor.

This suggests that there might have been more mutations in the Western Caucasian bat virus (Q5VKP1) and rabies virus (P06747)
phosphoproteins since they shared a common ancestor, than in the  Lagos bat virus phosphoprotein (O56773) and Mokola
virus phosphoprotein (P0C569) since they shared a common ancestor.

The tree above of the virus phosphoproteins is an unrooted phylogenetic
tree as it does not contain an outgroup sequence, that is a sequence of a protein that is known to be
more distantly related to the other proteins in the tree than they are to each other.

As a result, we cannot tell which direction evolutionary time ran in along the
internal branches of the tree. For example, we cannot tell whether the node representing the common ancestor
of (O56773, P0C569) was an ancestor of the node representing the common ancestor of (Q5VKP1, P06747), or the
other way around.

In order to build a rooted phylogenetic tree, we need to have an outgroup sequence in our tree.
In the case of the virus phosphoproteins, this is unfortunately not possible, as (as far as I know) there
is not any protein known that is more distantly related to the four proteins already in our tree than
they are to each other.

However, in many other cases, an outgroup - a sequence known to be more distantly relatd to the other
sequences in the tree than they are to each other - is known, and so it is possible to build a rooted phylogenetic
tree.

We discussed above that it is a good idea to investigate whether discarding the poorly
conserved regions of a multiple alignment has an effect on the phylogenetic analysis.
In this case, we made a filtered copy of the multiple alignment and stored it in the variable
cleanedvirusaln (see above). We can make a phylogenetic tree based this filtered alignment,
and see if it agrees with the phylogenetic tree based on the original alignment:

> cleanedvirusalntree <- unrootedNJtree(cleanedvirusaln,type="protein")
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Here O56773 and P0C569 are grouped together, and Q5VKP1 and P06747 are grouped together, as in the
phylogenetic tree based on the raw (unfiltered) multiple alignment (see above). Thus, filtering
the multiple alignment does not have an effect on the tree.

If we had found a difference in the trees made using the unfiltered and filtered multiple alignments,
we would have to examine the multiple alignments closely, to see if the unfiltered multiple alignment
contains a lot of very poorly aligned regions that might be adding noise to the phylogenetic analysis (if
this is true, the tree based on the filtered alignment is likely to be more reliable).




Building a rooted phylogenetic tree for protein sequences

In order to convert the unrooted tree into a rooted tree, we need to add an outgroup sequence.
Normally, the outgroup sequence is a sequence that we know from some prior knowledge to be more
distantly related to the other sequences under study than they are to each other.

For example, the protein Fox-1 is involved in determining the sex (gender) of an embryo in the
nematode worm Caenorhabditis elegans (UniProt accession Q10572). Related proteins are found in
other nematodes, including Caenorhabditis remanei (UniProt E3M2K8), Caenorhabditis briggsae (A8WS01),
Loa loa (E1FUV2), and Brugia malayi (UniProt A8NSK3).

Note that Caenorhabditis elegans is a model organism commonly studied in molecular biology.
The nematodes Loa loa, and Brugia malayi are parasitic nematodes that cause
filariasis [http://www.who.int/topics/filariasis/en/], which is classified by the WHO as
a neglected tropical disease.

The UniProt database contains a distantly related sequence from the fruitfly Drosophila melanogaster
(UniProt accession Q9VT99). If we were to build a phylogenetic tree of the nematode worm Fox-1 homologues,
the distantly related sequence from fruitfly would probably be a good choice of outgroup, since the
protein is from a different animal group (insects) than the nematode worms. Thus, it is likely that the
fruitfly protein is more distantly related to all the nematode proteins than they are to each other.

To retrieve the sequences from UniProt we can use the “retrieveseqs()” function (see above):

> seqnames <- c("Q10572","E3M2K8","Q8WS01","E1FUV2","A8NSK3","Q9VT99")
> seqs <- retrieveseqs(seqnames,"swissprot")





We can then write out the sequences to a FASTA file:

> write.fasta(seqs, seqnames, file="fox1.fasta")





We can then use CLUSTAL to create a PHYLIP-format alignment of the sequences, and store it in the
alignment file “fox1.phy”. This picture shows part of the alignment (the alignment is quite long,
so not all of it is shown):
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We can then read the alignment into R:

> fox1aln  <- read.alignment(file = "fox1.phy", format = "phylip")





The next step is to build a phylogenetic tree of the proteins, which again we can do using
the neighbour-joining algorithm.

This time we have an outgroup in our set of sequences, so we can build a rooted tree. The function “rootedNJtree()”
can be used to build a rooted tree. It returns the phylogenetic tree, and also makes a picture of the tree:

> rootedNJtree <- function(alignment, theoutgroup, type)
  {
     # load the ape and seqinR packages:
     require("ape")
     require("seqinr")
     # define a function for making a tree:
     makemytree <- function(alignmentmat, outgroup=`theoutgroup`)
     {
        alignment <- ape::as.alignment(alignmentmat)
        if      (type == "protein")
        {
           mydist <- dist.alignment(alignment)
        }
        else if (type == "DNA")
        {
           alignmentbin <- as.DNAbin(alignment)
           mydist <- dist.dna(alignmentbin)
        }
        mytree <- nj(mydist)
        mytree <- makeLabel(mytree, space="") # get rid of spaces in tip names.
        myrootedtree <- root(mytree, outgroup, r=TRUE)
        return(myrootedtree)
     }
     # infer a tree
     mymat  <- as.matrix.alignment(alignment)
     myrootedtree <- makemytree(mymat, outgroup=theoutgroup)
     # bootstrap the tree
     myboot <- boot.phylo(myrootedtree, mymat, makemytree)
     # plot the tree:
     plot.phylo(myrootedtree, type="p")  # plot the rooted phylogenetic tree
     nodelabels(myboot,cex=0.7)          # plot the bootstrap values
     mytree$node.label <- myboot   # make the bootstrap values be the node labels
     return(mytree)
  }





The function takes the alignment and the name of the outgroup as its inputs.
For example, to use it to make a phylogenetic tree of the C. elegans Fox-1
protein and its homologues, using the fruitfly protein (UniProt Q9VT99) as the outgroup, we type:

> fox1alntree <- rootedNJtree(fox1aln, "Q9VT99",type="protein")
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Here we can see that E3M2K8 (C. remanei Fox-1 homologue) and Q10572 (C. elegans Fox-1)
have been grouped together with bootstrap 100%, and A8NSK3 (Brugia malayi Fox-1 homologue) and
E1FUV2 (Loa loa Fox-1 homologue) have been grouped together with bootstrap 100%. These
four proteins have also been grouped together in a larger clade with bootstrap 100%.

Compared to these four proteins, the Q8WS01 (C. briggsae Fox-1 homologue) and Q9VT99 (fruitfly
outgroup) seem to be relatively distantly related.

As this is a rooted tree, we know the direction that evolutionary time ran.
Say we call the ancestor of the four sequences (E3M2K8, Q10572, A8NSK3, E1FUV2) ancestor1,
the ancestor of the two sequences (E3M2K8, Q10572) ancestor2, and the ancestor of the
two sequences (A8NSK3, E1FUV2) ancestor3.

Because it is a rooted tree, we know that time ran from left to right along the branches of the tree, so that ancestor1 was the
ancestor of ancestor2, and ancestor1 was also the ancestor of ancestor3.
In other words, ancestor1 lived before ancestor2 or ancestor3; ancestor2
and ancestor3 were descendants of ancestor1.

Another way of saying this is that E3M2K8 and Q10572 shared a common ancestor
with each other more recently than they did with A8NSK3 and E1FUV2.

The lengths of branches in this tree are proportional to the amount
of evolutionary change (estimated number of mutations) that occurred along the branches. The
branches leading back from E3M2K8 and Q10572 to their
last common ancestor are slightly longer than the
branches leading back from A8NSK3 and E1FUV2 to
their last common ancestor.

This indicates that there has been more evolutionary change in E3M2K8 (C. remanei Fox-1 homologue) and Q10572 (C. elegans Fox-1)
proteins since they diverged, than there has been in A8NSK3 (Brugia malayi Fox-1 homologue) and E1FUV2 (Loa loa Fox-1 homologue)
since they diverged.




Building a phylogenetic tree for DNA or mRNA sequences

In the example above, a phylogenetic tree was built for protein sequences.
The genomes of distantly related organisms such as vertebrates will have accumulated many
mutations since they diverged. Sometimes, so many mutations have occurred since the organisms
diverged that their DNA sequences are hard to align correctly and it is also hard to accurately
estimate evolutionary distances from alignments of those DNA sequences.

In contrast, as many mutations at the DNA level are synonymous at the protein level, protein sequences diverge at
a slower rate than DNA sequences. This is why for reasonably distantly related organisms
such as vertebrates, it is usually preferable to use protein sequences for phylogenetic analyses.

If you are studying closely related organisms such as primates, few mutations will have occurred
since they diverged. As a result, if you use protein sequences for a phylogenetic analysis,
there may be too few amino acid substitutions to provide enough ‘signal’ to use for the phylogenetic
analysis. Therefore, it is often preferable to use DNA sequences for a phylogenetic analysis of
closely related organisms such as primates.

We can use the functions unrootedNJtree() and rootedNJtree() described above to build unrooted or rooted neighbour-joining
phylogenetic trees based on an alignment of DNA or mRNA sequences. In this case, we need to use “type=DNA”
as an argument in these functions, to tell them that we are making a tree of nucleotide sequences, not protein sequences.

For example, to build an unrooted phylogenetic tree based on the alignment of the virus phosphoprotein mRNA sequences,
we type in R:

> virusmRNAaln  <- read.alignment(file = "virusmRNA.phy", format = "phylip")
> virusmRNAalntree <- unrootedNJtree(virusmRNAaln, type="DNA")
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Saving a phylogenetic tree as a Newick-format tree file

A commonly used format for representing phylogenetic trees is the Newick format.
Once you have built a phylogenetic tree using R, it is convenient to store it as
a Newick-format tree file. This can be done using the “write.tree()” function
in the Ape R package.

For example, to save the unrooted phylogenetic tree of virus phosphoprotein mRNA sequences
as a Newick-format tree file called “virusmRNA.tre”, we type:

> write.tree(virusmRNAalntree, "virusmRNA.tre")





The Newick-format file “virusmRNA.tre” should now appear in your “My Documents” folder.




Summary

In this practical, you have learnt the following R functions that
belong to the bioinformatics packages:


	read.alignment() from the SeqinR package for reading in a
multiple alignment

	dist.alignment() from the SeqinR package for calculating genetic
distances between protein sequences

	dist.dna() from the Ape package for calculating genetic
distances between DNA or mRNA sequences






Links and Further Reading

Some links are included here for further reading.

For background reading on phylogenetic trees, it is recommended to
read Chapter 7 of
Introduction to Computational Genomics: a case studies approach
by Cristianini and Hahn (Cambridge University Press;
www.computational-genomics.net/book/ [http://www.computational-genomics.net/book/]).

Another more in-depth (but very accesssible) book on phylogenetics is
Molecular Evolution: A Phylogenetic Approach by Roderic DM Page and
Edward C Holmes.

For more in-depth information and more examples on using the SeqinR
package for sequence analysis, look at the SeqinR documentation,
http://pbil.univ-lyon1.fr/software/seqinr/doc.php?lang=eng.

For more in-depth information and more examples on the Ape package
for phylogenetic analysis, look at the Ape documentation,
ape.mpl.ird.fr/ [http://ape.mpl.ird.fr/].

If you are using the Ape package for a phylogenetic analysis
project, it would be worthwhile to obtain a copy of the book
Analysis of Phylogenetics and Evolution with R by Emmanuel
Paradis, published by Springer, which has many nice examples of
using R for phylogenetic analyses.

For a more in-depth introduction to R, a good online tutorial is
available on the “Kickstarting R” website,
cran.r-project.org/doc/contrib/Lemon-kickstart [http://cran.r-project.org/doc/contrib/Lemon-kickstart/].

There is another nice (slightly more in-depth) tutorial to R
available on the “Introduction to R” website,
cran.r-project.org/doc/manuals/R-intro.html [http://cran.r-project.org/doc/manuals/R-intro.html].
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Exercises

Answer the following questions, using the R package. For each
question, please record your answer, and what you typed into R to
get this answer.

Model answers to the exercises are given in
Answers to the exercises on Multiple Alignment and Phylogenetic Trees.


	Q1. Calculate the genetic distances between the following NS1 proteins from different Dengue virus strains: Dengue virus 1 NS1 protein (Uniprot Q9YRR4), Dengue virus 2 NS1 protein (UniProt Q9YP96), Dengue virus 3 NS1 protein (UniProt B0LSS3), and Dengue virus 4 NS1 protein (UniProt Q6TFL5). Which are the most closely related proteins, and which are the least closely related, based on the genetic distances?

	Note: Dengue virus causes Dengue fever [http://www.who.int/topics/dengue/en/], which is classified by the WHO as a neglected
tropical disease. There are four main types of Dengue virus, Dengue virus 1, Dengue virus 2, Dengue virus 3, and Dengue virus 4.



Q2. Build an unrooted phylogenetic tree of the NS1 proteins from Dengue virus 1, Dengue virus 2, Dengue virus 3 and Dengue virus 4,
using the neighbour-joining algorithm. Which are the most closely related proteins, based on the tree? Based on the bootstrap values in the tree, how confident are you of this?

Q3. Build an unrooted phylogenetic tree of the NS1 proteins from Dengue viruses 1-4, based on a filtered alignment of the four proteins (keeping alignment columns in which at least 30% of letters are not gaps, and in which at least 30% of pairs of letters are identical). Does this differ from the tree based on the unfiltered alignment (in Q2)? Can you explain why?

Q4. The Zika virus is related to Dengue viruses, but is not a Dengue virus, and so therefore can be used as an outgroup in phylogenetic trees of Dengue virus sequences. UniProt accession Q32ZE1 consists of a sequence with similarity to the Dengue NS1 protein, so seems to be a related protein from Zika virus. Build a rooted phylogenetic tree of the Dengue NS1 proteins based on a filtered alignment (keeping alignment columns in which at least 30% of letters are not gaps, and in which at least 30% of pairs of letters are identical), using the Zika virus protein as the outgroup. Which are the most closely related Dengue virus proteins, based on the tree? What extra information does this tree tell you, compared to the unrooted tree in Q2?







          

      

      

    

  

    
      
          
            
  
REVISION EXERCISES 2

These are some revision exercises on sequence alignment and phylogenetic trees.


Exercises

Answer the following questions. For each question, please record
your answer, and what you did/typed to get this answer.

Model answers to the exercises are given in
Answers to Revision Exercises 2.




Q1.


	One of the key proteins produced by rabies virus is the rabies phosphoprotein (also known as rabies virus protein P).  The UniProt accession for rabies virus phosphoprotein is P06747. The Mokola virus also produces a phosphoprotein, which has UniProt accession P0C569. Use the dotPlot() function in the SeqinR R package to make a dotplot of these two proteins, using a windowsize of 10 and threshold of 5. Are there any long regions of similarity between the two proteins (if so, where are they)?

	Note: rabies virus is the virus responsible for rabies [http://www.who.int/rabies/en/], which is classified by the WHO as a neglected tropical disease. Mokola virus and rabies virus are closely related viruses that both belong to a group of viruses called the Lyssaviruses. Mokola virus causes a rabies-like infection in mammals including humans.






Q2.

The function “makeDotPlot1()” below is an R function that makes a dotplot of two sequences by plotting a dot at every position where the two sequences share an identical letter.  Use this function to make a dotplot of the rabies virus phosphoprotein and the Mokola virus phosphoprotein, setting the argument “dotsize” to 0.1 (this determines the radius of each dot plotted). Are there any long regions of similarity between the two proteins (if so, where are they)? Do you find the same regions as found in Q1, and if not, can you explain why?

> makeDotPlot1 <- function(seq1,seq2,dotsize=1)
  {
     length1 <- length(seq1)
     length2 <- length(seq2)
     # make a plot:
     x <- 1
     y <- 1
     plot(x,y,ylim=c(1,length2),xlim=c(1,length1),col="white") # make an empty plot
     # now plot dots at every position where the two sequences have the same letter:
     for (i in 1:length1)
     {
        letter1 <- seq1[i]
        for (j in 1:length2)
        {
           letter2 <- seq2[j]
           if (letter1 == letter2)
           {
              # add a point to the plot
              points(x=i,y=j,cex=dotsize,col="blue",pch=7)
           }
        }
     }
  }








Q3.

Adapt the R code in Q2 to write a function that makes a dotplot using a window of size x letters, where a dot is plotted in the first  cell of the window if y or more letters compared in that window are identical in the two sequences.




Q4.

Use the dotPlot() function in the SeqinR R package to make a dotplot of rabies virus phosphoprotein and Mokola virus phosphoprotein, using a window size of 3 and a threshold of 3. Use your own R function from Q3 to make a dotplot of rabies virus phosphoprotein and Mokola virus phosphoprotein, using a windowsize (x) of 3 and a threshold (y) of 3. Are the two plots similar or different, and can you explain why?




Q5.

Write an R function to calculate an unrooted phylogenetic tree with bootstraps, using the minimum evolution method (rather than the neighbour-joining method, which is used by the function unrootedNJtree).




Contact

I will be grateful if you will send me (Avril Coghlan [http://www.sanger.ac.uk/research/projects/parasitegenomics/]) corrections or suggestions for improvements to
my email address alc@sanger.ac.uk




License

The content in this book is licensed under a Creative Commons Attribution 3.0 License [http://creativecommons.org/licenses/by/3.0/].







          

      

      

    

  

    
      
          
            
  
Computational Gene-finding


The genetic code

A protein-coding gene starts with an “ATG”, which is followed by an
integer (whole) number of codons (DNA triplets) that code for amino
acids, and ends with a “TGA”, “TAA”, or “TAG”. That is, the
start codon of a gene is always “ATG”, while the stop codon of
a gene can be “TGA”, “TAA” or “TAG”.

In R, you can view the standard genetic code, the correspondence
between codons and the amino acids that they are translated into,
by using the tablecode() function in the SeqinR package:

> library(seqinr)
> tablecode()





[image: image2]

You can see from this table that “ATG” is translated to Met (the
amino acid methionine), and that “TAA”, “TGA” and “TAG” correspond
to Stp (stop codons, which are not translated to any amino acid,
but signal the end of translation).




Finding start and stop codons in a DNA sequence

To look for all the potential start and stop codons in a DNA
sequence, we need to find all the “ATG”s, “TGA”s, “TAA”s, and
“TAG”s in the sequence.

To do this, we can use the “matchPattern()” function from the
Biostrings R package, which identifies all occurrences of a
particular motif (eg. “ATG”) in a sequence. As input, the
matchPattern() function requires that the sequences be in the form
of a string of single characters.

For example, we can look for all “ATG”s in the sequence
“AAAATGCAGTAACCCATGCCC” by typing:

> library("Biostrings")
> s1 <- "aaaatgcagtaacccatgccc"
> matchPattern("atg", s1) # Find all ATGs in the sequence s1
  Views on a 21-letter BString subject
subject: aaaatgcagtaacccatgccc
views:
    start end width
[1]     4   6     3 [atg]
[2]    16  18     3 [atg]





The output from matchPattern() tells us that there are two “ATG”s
in the sequence, at nucleotides 4-6, and at nucleotides 16-18. In
fact, we can see these by looking at the sequence
“AAAATGCAGTAACCCATGCCC”.

Similarly, if you use matchPattern() to find the positions of
“TAA”s, “TGA”s, and “TAG”s in the sequence “AAAATGCAGTAACCCATGCCC”,
you will find that it has one “TAA” at nucleotides 10-12, but no
“TAG”s or “TGA”s.

The following R function “findPotentialStartsAndStops()” can be used
to find all potential start and stop codons in a DNA
sequence:

> findPotentialStartsAndStops <- function(sequence)
  {
     # Define a vector with the sequences of potential start and stop codons
     codons            <- c("atg", "taa", "tag", "tga")
     # Find the number of occurrences of each type of potential start or stop codon
     for (i in 1:4)
     {
        codon <- codons[i]
        # Find all occurrences of codon "codon" in sequence "sequence"
        occurrences <- matchPattern(codon, sequence)
        # Find the start positions of all occurrences of "codon" in sequence "sequence"
        codonpositions <- attr(occurrences,"start")
        # Find the total number of potential start and stop codons in sequence "sequence"
        numoccurrences <- length(codonpositions)
        if (i == 1)
        {
           # Make a copy of vector "codonpositions" called "positions"
           positions <- codonpositions
           # Make a vector "types" containing "numoccurrences" copies of "codon"
           types <- rep(codon, numoccurrences)
        }
        else
        {
           # Add the vector "codonpositions" to the end of vector "positions":
           positions   <- append(positions, codonpositions, after=length(positions))
           # Add the vector "rep(codon, numoccurrences)" to the end of vector "types":
           types       <- append(types, rep(codon, numoccurrences), after=length(types))
        }
     }
     # Sort the vectors "positions" and "types" in order of position along the input sequence:
     indices <- order(positions)
     positions <- positions[indices]
     types <- types[indices]
     # Return a list variable including vectors "positions" and "types":
     mylist <- list(positions,types)
     return(mylist)
  }





To use the function, you will need to copy and paste it into R.
For example, we can use this function to find potential
start and stop codons in sequence s1:

> s1 <- "aaaatgcagtaacccatgccc"
> findPotentialStartsAndStops(s1)
[[1]]
[1]  4 10 16

[[2]]
[1] "atg" "taa" "atg"





The result of the function is returned as a list variable that
contains two elements: the first element of the list is a vector
containing the positions of potential start and stop codons in the
input sequence, and the second element of the list is a vector
containing the type of those start/stop codons (“atg”, “taa”,
“tag”, or “tga”).

The output for sequence s1 tells us that
sequence s1 has an “ATG” starting at nucleotide 4, a “TAA”
starting at nucleotide 10, and another “ATG” starting at nucleotide
16.

We can use the function findPotentialStartsAndStops() to find all
potential start and stop codons in longer sequences. For example,
say we want to find all potential start and stop codons in the
first 500 nucleotides of the genome sequence of the DEN-1 Dengue virus
(NCBI accession NC_001477).

In a previous chapter, you
learnt that you can retrieve a sequence for an NCBI accession using the
“getncbiseq()” function. Thus, to retrieve the genome sequence of the DEN-1
Dengue virus (NCBI accession NC_001477), we can type:

> dengueseq <- getncbiseq("NC_001477")





The variable dengueseq is a vector variable, and each letter in
the DEN-1 Dengue virus DNA sequence is stored in one element of
this vector.

Dengue virus causes Dengue fever [http://apps.who.int/tdr/svc/diseases/dengue],
which is classified as a neglected tropical disease by the WHO.

To cut out the first 500 nucleotides of the
DEN-1 Dengue virus sequence, we can just take the first 500 elements of this
vector:

> dengueseqstart <- dengueseq[1:500] # Take the first 500 nucleotides of the DEN-1 Dengue sequence
> length(dengueseqstart)             # Find the length of the "dengueseqstart" start vector
[1] 500





Next we want to find potential start and stop codons in the first
500 nucleotides of the Dengue virus sequence. We can do this using the
findPotentialStartsAndStops() function described above. However,
the findPotentialStartsAndStops() function requires that the input
sequence be in the format of a string of characters, rather than a
vector. Therefore, we first need to convert the vector
dengueseqstart into a string of characters. We can do that using
the c2s() function in the SeqinR package:

> library("seqinr")                 # Load the SeqinR package
> dengueseqstart                    # Print out the vector dengueseqstart
  [1] "a" "g" "t" "t" "g" "t" "t" "a" "g" "t" "c" "t" "a" "c" "g" "t" "g" "g" "a"
  [20] "c" "c" "g" "a" "c" "a" "a" "g" "a" "a" "c" "a" "g" "t" "t" "t" "c" "g" "a"
  [39] "a" "t" "c" "g" "g" "a" "a" "g" "c" "t" "t" "g" "c" "t" "t" "a" "a" "c" "g"
  [58] "t" "a" "g" "t" "t" "c" "t" "a" "a" "c" "a" "g" "t" "t" "t" "t" "t" "t" "a"
  [77] "t" "t" "a" "g" "a" "g" "a" "g" "c" "a" "g" "a" "t" "c" "t" "c" "t" "g" "a"
  [96] "t" "g" "a" "a" "c" "a" "a" "c" "c" "a" "a" "c" "g" "g" "a" "a" "a" "a" "a"
  [115] "g" "a" "c" "g" "g" "g" "t" "c" "g" "a" "c" "c" "g" "t" "c" "t" "t" "t" "c"
  [134] "a" "a" "t" "a" "t" "g" "c" "t" "g" "a" "a" "a" "c" "g" "c" "g" "c" "g" "a"
  [153] "g" "a" "a" "a" "c" "c" "g" "c" "g" "t" "g" "t" "c" "a" "a" "c" "t" "g" "t"
  [172] "t" "t" "c" "a" "c" "a" "g" "t" "t" "g" "g" "c" "g" "a" "a" "g" "a" "g" "a"
  [191] "t" "t" "c" "t" "c" "a" "a" "a" "a" "g" "g" "a" "t" "t" "g" "c" "t" "t" "t"
  [210] "c" "a" "g" "g" "c" "c" "a" "a" "g" "g" "a" "c" "c" "c" "a" "t" "g" "a" "a"
  [229] "a" "t" "t" "g" "g" "t" "g" "a" "t" "g" "g" "c" "t" "t" "t" "t" "a" "t" "a"
  [248] "g" "c" "a" "t" "t" "c" "c" "t" "a" "a" "g" "a" "t" "t" "t" "c" "t" "a" "g"
  [267] "c" "c" "a" "t" "a" "c" "c" "t" "c" "c" "a" "a" "c" "a" "g" "c" "a" "g" "g"
  [286] "a" "a" "t" "t" "t" "t" "g" "g" "c" "t" "a" "g" "a" "t" "g" "g" "g" "g" "c"
  [305] "t" "c" "a" "t" "t" "c" "a" "a" "g" "a" "a" "g" "a" "a" "t" "g" "g" "a" "g"
  [324] "c" "g" "a" "t" "c" "a" "a" "a" "g" "t" "g" "t" "t" "a" "c" "g" "g" "g" "g"
  [343] "t" "t" "t" "c" "a" "a" "g" "a" "a" "a" "g" "a" "a" "a" "t" "c" "t" "c" "a"
  [362] "a" "a" "c" "a" "t" "g" "t" "t" "g" "a" "a" "c" "a" "t" "a" "a" "t" "g" "a"
  [381] "a" "c" "a" "g" "g" "a" "g" "g" "a" "a" "a" "a" "g" "a" "t" "c" "t" "g" "t"
  [400] "g" "a" "c" "c" "a" "t" "g" "c" "t" "c" "c" "t" "c" "a" "t" "g" "c" "t" "g"
  [419] "c" "t" "g" "c" "c" "c" "a" "c" "a" "g" "c" "c" "c" "t" "g" "g" "c" "g" "t"
  [438] "t" "c" "c" "a" "t" "c" "t" "g" "a" "c" "c" "a" "c" "c" "c" "g" "a" "g" "g"
  [457] "g" "g" "g" "a" "g" "a" "g" "c" "c" "g" "c" "a" "c" "a" "t" "g" "a" "t" "a"
  [476] "g" "t" "t" "a" "g" "c" "a" "a" "g" "c" "a" "g" "g" "a" "a" "a" "g" "a" "g"
  [495] "g" "a" "a" "a" "a" "t"
> dengueseqstartstring <- c2s(dengueseqstart) # Convert the vector "dengueseqstart" to a string of characters
> dengueseqstartstring                        # Print out the variable string of characters "dengueseqstartstring"
  [1] "agttgttagtctacgtggaccgacaagaacagtttcgaatcggaagcttgcttaacgtagttctaacagttttttattagagagcagatctctgatgaacaaccaacggaaaaagacgggtcgaccgtctttcaatatgctgaaacgcgcgagaaaccgcgtgtcaactgtttcacagttggcgaagagattctcaaaaggattgctttcaggccaaggacccatgaaattggtgatggcttttatagcattcctaagatttctagccatacctccaacagcaggaattttggctagatggggctcattcaagaagaatggagcgatcaaagtgttacggggtttcaagaaagaaatctcaaacatgttgaacataatgaacaggaggaaaagatctgtgaccatgctcctcatgctgctgcccacagccctggcgttccatctgaccacccgagggggagagccgcacatgatagttagcaagcaggaaagaggaaaat"





We can then find potential start and stop codons in the first 500
nucleotides of the DEN-1 Dengue virus sequence by typing:

> findPotentialStartsAndStops(dengueseqstartstring)
  [[1]]
  [1]   7  53  58  64  78  93  95  96 137 141 224 225 234 236 246 255 264 295 298 318
  [21] 365 369 375 377 378 399 404 413 444 470 471 474 478
  [[2]]
  [1] "tag" "taa" "tag" "taa" "tag" "tga" "atg" "tga" "atg" "tga" "atg" "tga" "tga"
  [14] "atg" "tag" "taa" "tag" "tag" "atg" "atg" "atg" "tga" "taa" "atg" "tga" "tga"
  [27] "atg" "atg" "tga" "atg" "tga" "tag" "tag"





We see that the lambda sequence has many different potential start
and stop codons, for example, a potential stop codon (TAG) at
nucleotide 7, a potential stop codon (TAA) at nucleotide 53, a
potential stop codon (TAG) at nucleotide 58, and so on.




Reading frames

Potential start and stop codons in a DNA sequence can be in three
different possible reading frames. A potential start/stop codon is
said to be in the +1 reading frame if there is an integer number
of triplets x between the first nucleotide of the sequence and
the start of the start/stop codon. Thus, a potential start/stop
codon that begins at nucleotides 1 (0 triplets), 4 (1 triplet), 7
(2 triplets)... will be in the +1 reading frame.

If there is an integer number of triplets x, plus one nucleotide
(ie. x.3 triplets), between the first nucleotide of the sequence
and the start of the start/stop codon, then the start/stop codon is
said to be in the +2 reading frame. A potential start/stop codon
that begins at nucleotides 2 (0.3 triplets), 5 (1.3 triplets), 8
(2.3 triplets) ... is in the +2 reading frame.

Similarly, if there is an integer number of triplets x, plus two
nucleotides (ie. x.6 triplets), between the first nucleotides of
the sequence and the start of the start/stop codon, the start/stop
codon is in the +3 reading frame. So a potential start/stop codon
that begins at nucleotides 3 (0.6 triplets), 6 (1.6 triplets), 9
(2.6 triplets)... is in the +3 reading frame.

For a potential start and stop codon to be part of the same gene,
they must be in the same reading frame.

From the output of findPotentialStartsAndStops() for the first 500
nucleotides of the genome of DEN-1 Dengue virus (see above), you can see that there is a
potential start codon (ATG) that starts at nucleotide 137, and a
potential stop codon (TGA) that starts at nucleotide 141. That is,
the potential start codon is from nucleotides 137-139 and the
potential stop codon is from nucleotides 141-143. Could the region
from nucleotides 137 to 143 possibly be a gene?

We can cut out the region from nucleotides 137 to 143 of the sequence
dengueseqstartstring to have a look, by using the substring()
function. If you look at the help page for the substring()
function, you will see that its arguments (inputs) are the name of
the variable containing the string of characters (ie., the DNA
sequence), and the coordinates of the substring that you want:

> substring(dengueseqstartstring,137,143)
  [1] "atgctga"





If we look at the sequence from nucleotides 137-143,
“ATGCTGA”, we see that it starts with a potential
start codon (ATG) and ends with a potential stop codon (TGA).

However, the ribosome reads the sequence by scanning the codons
(triplets) one-by-one from left to right, and when we break up the
sequence into codons (triplets) we see that it does not contain an
integer (whole) number of triplets: “ATG CTG A”.

This means that even if the ribosome will not recognise the region
from 137-143 as a potential gene, as the ATG at nucleotide 137 is not
separated from the TGA at nucleotide 141 by an integer number of
codons. That is, this ATG and TGA are not in the same
reading frame, and so cannot be the start and stop codon of the
same gene.

The potential start codon at nucleotide 137 of the
lambdaseqstartstring sequence is in the +2 reading frame, as
there is an integer number of triplets, plus one nucleotide, between the start of the
sequence and the start of the start codon (ie. triplets 1-3, 4-6,
7-9, 10-12, 13-15, 16-18, 19-21, 22-24, 25-27, 28-30, ..., 133-135, and a single nucleotide 136).

However, the potential stop codon at nucleotide 141 is the +3
reading frame, as there are two nucleotides plus an integer number
of triplets between the start of the sequence and the start of the
stop codon (ie. triplets 1-3, 4-6, 7-9, 10-12, 13-15, 16-18, 19-21,
22-24, 25-27, 28-30, 31-33, 34-36, 37-39, 40-42, 43-45, ..., 133-135, 136-138, and two
nucleotides 139, 140).

As the potential start codon at nucleotide 137 and the potential
stop codon at nucleotide 141 are in different reading frames, they
are not separated by an integer number of codons, and therefore
cannot be part of the same gene.




Finding open reading frames on the forward strand of a DNA sequence

To find potential genes, we need to look for a potential start
codon, followed by an integer number of codons, followed by a
potential stop codon. This is eqivalent to looking for a potential
start codon followed by a potential stop codon that is in the same
reading frame. Such a stretch of DNA is known as an
open reading frame (ORF), and is a good candidate for a potential
gene.

The following function plotPotentialStartsAndStops() plots the potential start and
stop codons in the three different reading frames of a DNA
sequence:

> plotPotentialStartsAndStops <- function(sequence)
  {
     # Define a vector with the sequences of potential start and stop codons
     codons <- c("atg", "taa", "tag", "tga")
     # Find the number of occurrences of each type of potential start or stop codon
     for (i in 1:4)
     {
        codon <- codons[i]
        # Find all occurrences of codon "codon" in sequence "sequence"
        occurrences <- matchPattern(codon, sequence)
        # Find the start positions of all occurrences of "codon" in sequence "sequence"
        codonpositions <- attr(occurrences,"start")
        # Find the total number of potential start and stop codons in sequence "sequence"
        numoccurrences <- length(codonpositions)
        if (i == 1)
        {
           # Make a copy of vector "codonpositions" called "positions"
           positions   <- codonpositions
           # Make a vector "types" containing "numoccurrences" copies of "codon"
           types       <- rep(codon, numoccurrences)
        }
        else
        {
           # Add the vector "codonpositions" to the end of vector "positions":
           positions   <- append(positions, codonpositions, after=length(positions))
           # Add the vector "rep(codon, numoccurrences)" to the end of vector "types":
           types       <- append(types, rep(codon, numoccurrences), after=length(types))
        }
     }
     # Sort the vectors "positions" and "types" in order of position along the input sequence:
     indices <- order(positions)
     positions <- positions[indices]
     types <- types[indices]
     # Make a plot showing the positions of the start and stop codons in the input sequence:
     # Draw a line at y=0 from 1 to the length of the sequence:
     x  <- c(1,nchar(sequence))
     y <- c(0,0)
     plot(x, y, ylim=c(0,3), type="l", axes=FALSE, xlab="Nucleotide", ylab="Reading frame",
        main="Predicted start (red) and stop (blue) codons")
     segments(1,1,nchar(sequence),1)
     segments(1,2,nchar(sequence),2)
     # Add the x-axis at y=0:
     axis(1, pos=0)
     # Add the y-axis labels:
     text(0.9,0.5,"+1")
     text(0.9,1.5,"+2")
     text(0.9,2.5,"+3")
     # Draw in each predicted start/stop codon:
     numcodons <- length(positions)
     for (i in 1:numcodons)
     {
        position <- positions[i]
        type <- types[i]
        remainder <- (position-1) %% 3
        if    (remainder == 0) # +1 reading frame
        {
           if (type == "atg") { segments(position,0,position,1,lwd=1,col="red") }
           else               { segments(position,0,position,1,lwd=1,col="blue")}
        }
        else if (remainder == 1)
        {
           if (type == "atg") { segments(position,1,position,2,lwd=1,col="red") }
           else               { segments(position,1,position,2,lwd=1,col="blue")}
        }
        else if (remainder == 2)
        {
           if (type == "atg") { segments(position,2,position,3,lwd=1,col="red") }
           else               { segments(position,2,position,3,lwd=1,col="blue")}
        }
     }
   }





To use this function, you will first need to copy and paste it into R.

For example, to plot the potential start and stop codons
in the first 500 nucleotides of the DEN-1 Dengue virus genome, we
type:

> plotPotentialStartsAndStops(dengueseqstartstring)





[image: image3]

In the picture produced by plotPotentialStartsAndStops(), the
x-axis represents the input sequence (dengueseqstartstring here).
The potential start codons are represented by vertical red lines,
and potential stop codons are represented by vertical blue lines.

Three different layers in the picture show potential start/stop
codons in the +1 reading frame (bottom layer), +2 reading frame
(middle layer), and +3 reading frame (top layer).

We can see that the start codon at nucleotide 137 is represented by
a vertical red line in the layer corresponding to the +2 reading
frame (middle layer). There are no potential stop codons in the +2
reading frame to the right of that start codon. Thus, the start codon
at nucleotide 137 does not seem to be part of an open reading frame.

We can see however that in the +3 reading frame (top layer) there is
a predicted start codon (red line) at position 318 and that this is
followed by a predicted stop codon (blue line) at position 371.
Thus, the region from nucleotides 318 to 371
could be a potential gene in the +3 reading frame. In other words,
the region from nucleotides 318 to 371 is an open reading frame, or
ORF.

The following function findORFsinSeq() finds ORFs in an input sequence:

> findORFsinSeq <- function(sequence)
  {
     require(Biostrings)
     # Make vectors "positions" and "types" containing information on the positions of ATGs in the sequence:
     mylist <- findPotentialStartsAndStops(sequence)
     positions <- mylist[[1]]
     types <- mylist[[2]]
     # Make vectors "orfstarts" and "orfstops" to store the predicted start and stop codons of ORFs
     orfstarts <- numeric()
     orfstops <- numeric()
     # Make a vector "orflengths" to store the lengths of the ORFs
     orflengths <- numeric()
     # Print out the positions of ORFs in the sequence:
     # Find the length of vector "positions"
     numpositions <- length(positions)
     # There must be at least one start codon and one stop codon to have an ORF.
     if (numpositions >= 2)
     {
        for (i in 1:(numpositions-1))
        {
           posi <- positions[i]
           typei <- types[i]
           found <- 0
           while (found == 0)
           {
              for (j in (i+1):numpositions)
              {
                 posj  <- positions[j]
                 typej <- types[j]
                 posdiff <- posj - posi
                 posdiffmod3 <- posdiff %% 3
                 # Add in the length of the stop codon
                 orflength <- posj - posi + 3
                 if (typei == "atg" && (typej == "taa" || typej == "tag" || typej == "tga") && posdiffmod3 == 0)
                 {
                    # Check if we have already used the stop codon at posj+2 in an ORF
                    numorfs <- length(orfstops)
                    usedstop <- -1
                    if (numorfs > 0)
                    {
                      for (k in 1:numorfs)
                      {
                          orfstopk <- orfstops[k]
                          if (orfstopk == (posj + 2)) { usedstop <- 1 }
                      }
                    }
                    if (usedstop == -1)
                    {
                       orfstarts <- append(orfstarts, posi, after=length(orfstarts))
                       orfstops <- append(orfstops, posj+2, after=length(orfstops)) # Including the stop codon.
                       orflengths <- append(orflengths, orflength, after=length(orflengths))
                    }
                    found <- 1
                    break
                 }
                 if (j == numpositions) { found <- 1 }
              }
           }
        }
     }
     # Sort the final ORFs by start position:
     indices <- order(orfstarts)
     orfstarts <- orfstarts[indices]
     orfstops <- orfstops[indices]
     # Find the lengths of the ORFs that we have
     orflengths <- numeric()
     numorfs <- length(orfstarts)
     for (i in 1:numorfs)
     {
        orfstart <- orfstarts[i]
        orfstop <- orfstops[i]
        orflength <- orfstop - orfstart + 1
        orflengths <- append(orflengths,orflength,after=length(orflengths))
     }
     mylist <- list(orfstarts, orfstops, orflengths)
     return(mylist)
  }





You will need to copy and paste this function into R before you can use it.
For example, we can use it to find all ORFs in the sequence s1:

> s1 <- "aaaatgcagtaacccatgccc"
> findORFsinSeq(s1)
[[1]]
[1] 4

[[2]]
[1] 12

[[3]]
[1] 9





The function findORFsinSeq() returns a list variable, where the
first element of the list is a vector of the start positions of
ORFs, the second element of the list is a vector of the end
positions of those ORFs, and the third element is a vector
containing the lengths of the ORFs.

The output for the
findORFsinSeq() function for s1 tells us that there is one ORF in
the sequence s1, and that the predicted start codon starts at
nucleotide 4 in the sequence, and that the predicted stop codon
ends at nucleotide 12 in the sequence.

We can use the function findORFsinSeq() to find the ORFs in the
first 500 nucleotides of the DEN-1 Dengue virus genome sequence
by typing:

> findORFsinSeq(dengueseqstartstring)
  [[1]]
  [1] 298 318
  [[2]]
  [1] 480 371
  [[3]]
  [1] 183  54





The result from findORFsinSeq() indicates that there are two ORFs
in the first 500 nucleotides of the DEN-1 Dengue virus genome, at nucleotides
298-480 (start codon at 298-300, stop codon at 478-480), and 318-371 (start codon
at 318-320, stop codon at 369-371).

The following function “plotORFsinSeq()” plots the positions of ORFs in a sequence:

> plotORFsinSeq <- function(sequence)
  {
     # Make vectors "positions" and "types" containing information on the positions of ATGs in the sequence:
     mylist <- findPotentialStartsAndStops(sequence)
     positions <- mylist[[1]]
     types <- mylist[[2]]
     # Make vectors "orfstarts" and "orfstops" to store the predicted start and stop codons of ORFs
     orfstarts <- numeric()
     orfstops <- numeric()
     # Make a vector "orflengths" to store the lengths of the ORFs
     orflengths <- numeric()
     # Print out the positions of ORFs in the sequence:
     numpositions <- length(positions) # Find the length of vector "positions"
     # There must be at least one start codon and one stop codon to have an ORF.
     if (numpositions >= 2)
     {
        for (i in 1:(numpositions-1))
        {
           posi <- positions[i]
           typei <- types[i]
           found <- 0
           while (found == 0)
           {
              for (j in (i+1):numpositions)
              {
                 posj <- positions[j]
                 typej <- types[j]
                 posdiff <- posj - posi
                 posdiffmod3 <- posdiff %% 3
                 orflength <- posj - posi + 3 # Add in the length of the stop codon
                 if (typei == "atg" && (typej == "taa" || typej == "tag" || typej == "tga") && posdiffmod3 == 0)
                 {
                    # Check if we have already used the stop codon at posj+2 in an ORF
                    numorfs <- length(orfstops)
                    usedstop <- -1
                    if (numorfs > 0)
                    {
                       for (k in 1:numorfs)
                       {
                          orfstopk <- orfstops[k]
                          if (orfstopk == (posj + 2)) { usedstop <- 1 }
                       }
                    }
                    if (usedstop == -1)
                    {
                       orfstarts <- append(orfstarts, posi, after=length(orfstarts))
                       orfstops <- append(orfstops, posj+2, after=length(orfstops)) # Including the stop codon.
                       orflengths <- append(orflengths, orflength, after=length(orflengths))
                    }
                    found <- 1
                    break
                 }
                 if (j == numpositions) { found <- 1 }
              }
           }
        }
     }
     # Sort the final ORFs by start position:
     indices <- order(orfstarts)
     orfstarts <- orfstarts[indices]
     orfstops <- orfstops[indices]
     # Make a plot showing the positions of ORFs in the input sequence:
     # Draw a line at y=0 from 1 to the length of the sequence:
     x <- c(1,nchar(sequence))
     y <- c(0,0)
     plot(x, y, ylim=c(0,3), type="l", axes=FALSE, xlab="Nucleotide", ylab="Reading frame", main="Predicted ORFs")
     segments(1,1,nchar(sequence),1)
     segments(1,2,nchar(sequence),2)
     # Add the x-axis at y=0:
     axis(1, pos=0)
     # Add the y-axis labels:
     text(0.9,0.5,"+1")
     text(0.9,1.5,"+2")
     text(0.9,2.5,"+3")
     # Make a plot of the ORFs in the sequence:
     numorfs <- length(orfstarts)
     for (i in 1:numorfs)
     {
        orfstart <- orfstarts[i]
        orfstop <- orfstops[i]
        remainder <- (orfstart-1) %% 3
        if    (remainder == 0) # +1 reading frame
        {
           rect(orfstart,0,orfstop,1,col="cyan",border="black")
        }
        else if (remainder == 1)
        {
           rect(orfstart,1,orfstop,2,col="cyan",border="black")
        }
        else if (remainder == 2)
        {
           rect(orfstart,2,orfstop,3,col="cyan",border="black")
        }
     }
  }





To use this function, you will first need to copy and paste it into R.
You can then use this function to plot the positions of the ORFs in
dengueseqstartstring by typing:

> plotORFsinSeq(dengueseqstartstring)
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The picture produced by plotORFsinSeq() represents the two ORFs in
the first 500 nucleotides of the lambda genome as blue rectangles.

One of the ORFs is in the +3 reading frame, and one is in the
+1 reading frame. There are no ORFs in the +2 reading frame, as
there are no potential stop codons to the right (3’) of the
potential start codons in the +2 reading frame, as we can see from
the picture produced by plotPotentialStartsAndStops() above.




Predicting the protein sequence for an ORF

If you find an ORF in a DNA sequence, it is interesting to find the
DNA sequence of the ORF. For example, the function findORFsinSeq()
indicates that there is an ORF from nucleotides 4-12 of the
sequence s1 (aaaatgcagtaacccatgccc). To look at the DNA sequence
for just the ORF, we can use the substring() function to cut out
that piece of DNA. For example, to cut out the substring of
sequence s1 that corresponds to the ORF from nucleotides 4-12, we
type:

> s1 <- "aaaatgcagtaacccatgccc"
> myorf <- substring(s1, 4, 12)
> myorf # Print out the sequence of "myorf"
  [1] "atgcagtaa"





As you can see, the ORF starts with a predicted start codon (ATG),
is followed by an integer number of codons (just one codon, CAG, in
this case), and ends with a predicted stop codon (TAA).

If you have the DNA sequence of an ORF, you can predict the protein
sequence for the ORF by using the translate() function from the
SeqinR package. Note that as there is a function called translate()
in both the Biostrings and SeqinR packages, we need to type
seqinr::translate() to specify that we want to use the SeqinR
translate() function.

The translate() function requires that the input sequence be in the
form of a vector of characters. If your sequence is in the form of
a string of characters, you can convert it to a vector of
characters using the s2c() function from the SeqinR package. For
example, to predict the protein sequence of the ORF myorf, you
would type:

> myorfvector <- s2c(myorf) # Convert the sequence of characters to a vector
> myorfvector               # Print out the value of "myorfvector"
[1] "a" "t" "g" "c" "a" "g" "t" "a" "a"
> seqinr::translate(myorfvector)
[1] "M" "Q" "*"





From the output of the seqinr::translate() function, we see that
the predicted start codon (ATG) is translated as a Methionine (M),
and that this is followed by a Glutamine (Q). The predicted stop
codon is represented as “*” as it is not translated into any amino
acid.




Finding open reading frames on the reverse strand of a DNA sequence

Genes in a genome sequence can occur either on the forward (plus)
strand of the DNA, or on the reverse (minus) strand. To find ORFs
on the reverse strand of a sequence, we must first infer the
reverse strand sequence, and then use our findORFsinSeq() function
to find ORFs on the reverse strand.

The reverse strand sequence easily can be inferred from the forward
strand sequence, as it is always the reverse complement sequence of
the forward strand sequence. We can use the comp() function from
the SeqinR package to calculate the complement of a sequence, and
the rev() function to reverse that sequence in order to give us the
reverse complement sequence.

The comp() and rev() functions require that the input sequence is
in the form of a vector of characters. The s2c() function can be
used to convert a sequence in the form of a string of characters to
a vector, while the c2s() function is useful for convering a vector
back to a string of characters.

For example, if our forward strand
sequence is “AAAATGCTTAAACCATTGCCC”, and we want to find the
reverse strand sequence, we type:

> forward <- "AAAATGCTTAAACCATTGCCC"
> forwardvector <- s2c(forward)                # Convert the string of characters to a vector
> forwardvector                                # Print out the vector containing the forward strand sequence
 [1] "A" "A" "A" "A" "T" "G" "C" "T" "T" "A" "A" "A" "C" "C" "A" "T" "T" "G" "C" "C" "C"
> reversevector <- rev(comp(forwardvector))    # Find the reverse strand sequence, by finding the reverse complement
> reversevector                                # Print out the vector containing the reverse strand sequence
 [1] "g" "g" "g" "c" "a" "a" "t" "g" "g" "t" "t" "t" "a" "a" "g" "c" "a" "t" "t" "t" "t"
> reverse <- c2s(reversevector)                # Convert the vector to a string of characters
> reverse                                      # Print out the string of characters containing the reverse strand sequence
[1] "gggcaatggtttaagcatttt"





In the command reversevector <- rev(comp(forwardvector)) above, we
are first using the comp() function to find the complement of the
forward strand sequence. We are then using the rev() function to
take the output sequence given by comp() and reverse the order of
the letters in that sequence. An equivalent way of doing the same
thing would be to type:

> complement <- comp(forwardvector)            # Find the complement of the forward strand sequence
> reversevector <- rev(complement)             # Reverse the order of the letters in sequence "complement", to
                                                  # find the reverse strand sequence (the reverse complement sequence)





Once we have inferred the reverse strand sequence, we can then use
the findORFsinSeq() function to find ORFs in the reverse strand
sequence:

> findORFsinSeq(reverse)
[[1]]
[1] 6

[[2]]
[1] 14

[[3]]
[1] 9





This indicates that there is one ORF of length 9 bp in the reverse
strand of sequence “AAAATGCTTAAACCATTGCCC”, that has a predicted start codon that
starts at nucleotide 6 in the reverse strand sequence and a
predicted stop codon that ends at nucleotide 14 in the reverse
strand sequence.




Lengths of open reading frames

As you can see from the picture displaying the genetic code made
using tablecode() (above), three of the 64 different codons are
stop codons. This means that in a random DNA sequence the
probability that any codon is a potential stop codon is 3/64, or
about 1/21 (about 5%).

Therefore, you might expect that sometimes
potential start and stop codons can occur in a DNA sequence just
due to chance alone, not because they are actually part of any real
gene that is transcribed and translated into a protein.

As a result, many of the ORFs in a DNA sequence may not correspond to
real genes, but just be stretches of DNA between potential start
and stop codons that happened by chance to be found in the
sequence.

In other words, an open reading frame (ORF) is just a
gene prediction, or a potential gene. It may correspond to a real
gene (may be a true positive gene prediction), but it may not (may
be a false positive gene prediction).

How can we tell whether the potential start and stop codons of an
ORF are probably real start and stop codons, that is, whether an
ORF probably corresponds to a real gene that is transcribed and
translated into a protein?

In fact, we cannot tell using
bioinformatics methods alone (we actually need to do some lab
experiments to know), but we can make a fairly confident
prediction. We can make our prediction based on the length of the
ORF.

y definition, an ORF is a stretch of DNA that starts with a
potential start codon, and ends with a potential stop codon in the
same reading frame, and so has no internal stop codons in that
reading frame. Because about 1/21 of codons (~5%) in a random DNA
sequence are expected to be potential stop codons just by chance
alone, if we see a very long ORF of hundreds of codons, it would be
surprising that there would be no internal stop codons in such a
long stretch of DNA if the ORF were not a real gene.

In other
words, long ORFs that are hundreds of codons long are unlikely to
occur due to chance alone, and therefore we can be fairly confident
that such long ORFs probably correspond to real genes.




Identifying significant open reading frames

How long does an ORF need to be in order for us to be confident
that it probably corresponds to a real gene? This is a difficult
question.

One approach to answer this is to ask: what is the
longest ORF found in a random sequence of the same length and
nucleotide composition as our original sequence?

The ORFs in a
random sequence do not correspond to real genes, but are just due
to potential start and stop codons that have occurred by chance in
those sequences (since, by definition, a random sequence is one
that was generated randomly, rather than by evolution as in a real
organism).

Thus, by looking at the lengths of ORFs in the random
sequence, we can see what is the longest ORF that is likely to
occur by chance alone.

But where can we get random sequences from? In a previous chapter,
you learnt that you can generate random sequences using a
multinomial model with a particular probability of each letter (a
particular probability of A, C, G, and T in the case of random DNA
sequences).

In that previous chapter,
we used the function generateSeqsWithMultinomialModel() to generate random sequences
using a multinomial model in which the probability of each letter is set equal to the
fraction of an input sequence that consists of that letter. This
function takes two arguments, the input sequence, and the number of
the random sequences that you want to generate.

For example, to create a random sequence of the same length as
‘AAAATGCTTAAACCATTGCCC’, using a multinomial model in which the
probabilities of A, C, G and T are set equal to their fractions in
this sequence, we copy and paste the generateSeqsWithMultinomialModel() into R, then type:

> myseq    <- "AAAATGCTTAAACCATTGCCC"
> generateSeqsWithMultinomialModel(myseq, 1) # Generate one random sequence using the multinomial model
[1] "AACAATTCTACCCTATTCTTC"





We can then use the findORFsinSeq() function to find ORFs in this
random sequence. If we repeat this 10 times, we can find the
lengths of the ORFs found in the 10 random sequences. We can then
compare the lengths of the ORFs found in the original sequence, to
the lengths of the ORFs found in the random sequences.

For example,
to compare the lengths of ORFs found in the DEN-1 Dengue virus genome
sequence dengueseq to the lengths of ORFs found in 10 random
sequences generated using a multinomial model in which the
probabilities of the four bases are set equal to their fractions in
the DEN-1 Dengue virus sequence, we type:

> dengueseqstring <- c2s(dengueseq)           # Convert the Dengue sequence to a string of characters
> mylist <- findORFsinSeq(dengueseqstring)    # Find ORFs in "dengueseqstring"
> orflengths <- mylist[[3]]                   # Find the lengths of ORFs in "dengueseqstring"
> randseqs <- generateSeqsWithMultinomialModel(dengueseqstring, 10) # Generate 10 random sequences using the multinomial model
> randseqorflengths <- numeric()              # Tell R that we want to make a new vector of numbers
> for (i in 1:10)
  {
     print(i)
     randseq <- randseqs[i]                     # Get the ith random sequence
     mylist <- findORFsinSeq(randseq)           # Find ORFs in "randseq"
     lengths <- mylist[[3]]                     # Find the lengths of ORFs in "randseq"
     randseqorflengths <- append(randseqorflengths, lengths, after=length(randseqorflengths))
  }





This may take a little time to run, however, the for loop above
prints out the value of i each time that it starts the loop, so
you can see how far it has got.

In the code above, we retrieve the
lengths of the ORFs found by function findORFsinSeq() by taking the
third element of the list returned by this function. As mentioned
above, the third element of the list returned by this function is a
vector containing the lengths of all the ORFs found in the input
sequence.

We can then plot a histogram of the lengths of the ORFs in the real
DEN-1 Dengue genome sequence (orflengths) beside a
histogram of the lengths of the ORFs in the 10 random sequences
(randseqorflengths):

> par(mfrow = c(1,2))                      # Make a picture with two plots side-by-side (one row, two columns)
> bins <- seq(0,11000,50)                  # Set the bins for the histogram
> hist(randseqorflengths, breaks=bins, col="red", xlim=c(0,1000))
> hist(orflengths, breaks=bins, col="red", xlim=c(0,1000))
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In other words, the histogram of the lengths of the ORFs in the 10
random sequences gives us an idea of the length distribution of
ORFs that you would expect by chance alone in a random DNA sequence
(generated by a multinomial model in which the probabilities of the
four bases are set equal to their frequencies in the DEN-1 Dengue
virus genome sequence).

We can calculate the longest of the ORFs that occurs in the random
sequences, using the max() function, which can be used to find the
largest element in a vector of numbers:

> max(randseqorflengths)
[1] 342





This indicates that the longest ORF that occurs in the random
sequences is 342 nucleotides long. Thus, it is possible for an ORF
of up to 342 nucleotides to occur by chance alone in a random
sequence of the same length and roughly the same composition as the
DEN-1 Dengue virus genome.

Therefore, we could use 342
nucleotides as a threshold, and discard all ORFs found in the
DEN-1 Dengue virus genome that are shorter than this, under the
assumption that they probably arose by chance and probably do not
correspond to real genes. How many ORFs would be left in the
DEN-1 Dengue virus genome sequence if we used 342 nucleotides as
a threshold?

> summary(orflengths > 342)
     Mode   FALSE    TRUE    NA's
  logical     115       1       0





If we did use 342 nucleotides as a threshold, there would only be
1 ORF left in the DEN-1 Dengue virus genome. Some of the 115
shorter ORFs that we discarded may correspond to real genes.

Generally, we don’t want to miss many real genes, we may want to
use a more tolerant threshold. For example, instead of discarding
all Dengue ORFs that are shorter than the longest ORF found in the
10 random sequences, we could discard all Dengue ORFs that are
shorter than the longest 99% of ORFs in the random sequences.

We can use the quantile() function to find quantiles of a set of
numbers. The 99th quantile for a set of numbers is the value x
such that 99% of the numbers in the set have values less than x.

For example, to find the 99th quantile of randomseqorflengths, we
type:

> quantile(randseqorflengths, probs=c(0.99))
99%
248.07





This means that 99% of the ORFs in the random sequences have
lengths less than 248 nucleotides long. In other words, the longest
of the longest 99% of ORFs in the random sequences is 248
nucleotides.

Thus, if we were using this as a threshold, we would
discard all ORFs from the DEN-1 Dengue genome that are 248
nucleotides or shorter. This will result in fewer ORFs being
discarded than if we used the more stringent threshold of 342
nucleotides (ie. discarding all ORFs of <342 nucleotides), so we
will probably have discarded fewer ORFs that correspond to real
genes. Unfortunately, it probably means that we will also have kept
more false positives at the same time, that is, ORFs that do not
correspond to real genes.




Summary

In this practical, you will have learnt to use the following R
functions:


	substring() for cutting out a substring of a string of
characters (eg. a subsequence of a DNA sequence)

	rev() for reversing the order of the elements in a vector

	hist() to make a histogram plot

	max() to find the largest element in a vector of numbers

	quantile() to find quantiles of a set of numbers that correspond
to particular probabilities



All of these functions belong to the standard installation of R.

You have also learnt the following R functions that belong to the
bioinformatics packages:


	tablecode() in the SeqinR package for viewing the genetic code

	MatchPattern() in the Biostrings package for finding all
occurrences of a motif in a sequence

	translate() in the SeqinR package to get the predicted protein
sequence for an ORF

	s2c() in the SeqinR package to convert a sequence stored as a
string of characters into a vector

	c2s() in the SeqinR package to convert a sequence stored in a
vector into a string of characters

	comp() in the SeqinR package to find the complement of a DNA
sequence






Links and Further Reading

Some links are included here for further reading.

For background reading on computational gene-finding, it is
recommended to read Chapter 2 of
Introduction to Computational Genomics: a case studies approach
by Cristianini and Hahn (Cambridge University Press;
www.computational-genomics.net/book/ [http://www.computational-genomics.net/book/]).

For more in-depth information and more examples on using the SeqinR
package for sequence analysis, look at the SeqinR documentation,
http://pbil.univ-lyon1.fr/software/seqinr/doc.php?lang=eng.

For more information on and examples using the Biostrings package,
see the Biostrings documentation at
http://www.bioconductor.org/packages/release/bioc/html/Biostrings.html.

There is also a very nice chapter on “Analyzing Sequences”, which
includes examples of using the SeqinR and Biostrings packages for
sequence analysis, in the book
Applied statistics for bioinformatics using R by Krijnen
(available online at
cran.r-project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf [http://cran.r-project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf]).

For a more in-depth introduction to R, a good online tutorial is
available on the “Kickstarting R” website,
cran.r-project.org/doc/contrib/Lemon-kickstart [http://cran.r-project.org/doc/contrib/Lemon-kickstart/].

There is another nice (slightly more in-depth) tutorial to R
available on the “Introduction to R” website,
cran.r-project.org/doc/manuals/R-intro.html [http://cran.r-project.org/doc/manuals/R-intro.html].
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Exercises

Answer the following questions, using the R package. For each
question, please record your answer, and what you typed into R to
get this answer.

Model answers to the exercises are given in
Answers to the exercises on Computational Gene-finding.

Q1. How many ORFs are there on the forward strand of the DEN-1 Dengue virus genome (NCBI accession NC_001477)?

Q2. What are the coordinates of the rightmost (most 3’, or last) ORF in the forward strand of the DEN-1 Dengue virus genome?

Q3. What is the predicted protein sequence for the rightmost (most 3’, or last) ORF in the forward strand of the DEN-1 Dengue virus genome?

Q4. How many ORFs are there of 30 nucleotides or longer in the forward strand of the DEN-1 Dengue virus genome sequence?

Q5. How many ORFs longer than 248 nucleotides are there in the forward strand of the DEN-1 Dengue genome sequence?

Q6. If an ORF is 248 nucleotides long, what length in amino acids will its predicted protein sequence be?


	Q7. How many ORFs are there on the forward strand of the rabies virus genome (NCBI accession NC_001542)?

	Note: rabies virus is the virus responsible for rabies [http://www.who.int/rabies/en/], which is classified by the
WHO as a neglected tropical disease.



Q8. What is the length of the longest ORF among the 99% of longest ORFs in 10 random sequences of the same lengths and composition as
the rabies virus genome sequence?

Q9. How many ORFs are there in the rabies virus genome that are longer than the threshold length that you found in Q8?







          

      

      

    

  

    
      
          
            
  
Comparative Genomics


Introduction

Comparative genomics is the field of bioinformatics that involves
comparing the genomes of two different species, or of two different
strains of the same species.

One of the first questions to ask when comparing the genomes of two
species is: do the two species have the same number of genes (ie.
the same gene content)? Since all life on earth shared a common
ancestor at some point, any two species, for example, human and a
fruitfly, must have descended from a common ancestor species.

Since the time of the common ancestor of two species (eg. of human and
mouse), some of the genes that were present in the common ancestor
species may have been lost from either of the two descendant
lineages. Furthermore, the two descendant lineages may have gained
genes that were not present in the common ancestor species.




Using the biomaRt R Library to Query the Ensembl Database

To carry out comparative genomic analyses of two animal species whose
genomes have been fully sequenced (eg. human and mouse), it is useful to
analyse the data in the Ensembl database (www.ensembl.org [http://www.ensembl.org]).

The main Ensembl database which you can browse on the
main Ensembl webpage [http://www.ensembl.org]
contains genes from fully sequenced vertebrates, as
well as Saccharomyces cerevisiae (yeast) and a small number of
additional model organism animals (eg. the nematode worm Caenorhabditis elegans
and the fruit-fly Drosophila melanogaster).

There are also Ensembl databases for other groups of organisms,
for example Ensembl Protists [http://protists.ensembl.org/index.html] for
Protists, Ensembl Metazoa [http://metazoa.ensembl.org/index.html] for
Metazoans, Ensembl Bacteria [http://bacteria.ensembl.org/index.html] for Bacteria,
Ensembl Plants [http://plants.ensembl.org/index.html] for Plants, and
Ensembl Fungi [http://fungi.ensembl.org/index.html] for Fungi.

It is possible to carry out analyses of the Ensembl database using
R, with the “biomaRt” R package. The “biomaRt” package can connect
to the Ensembl database, and perform queries on the data.

The “biomaRt” R package is part of the Bioconductor set of R packages,
and so can be installed as explained here.

Once you have installed the “biomaRt” package, you can get a list
of databases that can be queried using this package by typing:

> library("biomaRt") # Load the biomaRt package in R
> listMarts()        # List all databases that can be queried
                                   biomart
  1                                ensembl
  2                                    snp
  3                    functional_genomics
  4                                   vega
  5                       bacterial_mart_9
  6                          fungal_mart_9
  7                    fungal_variations_9
  8                         metazoa_mart_9
  9                   metazoa_variations_9
  10                          plant_mart_9
  11                    plant_variations_9
  12                        protist_mart_9
  13                  protist_variations_9
  14                                   msd
  15                                  htgt
  16                              REACTOME
  17                         WS220-testing
  ...
                                                      version
  1                              ENSEMBL GENES 62 (SANGER UK)
  2                         ENSEMBL  VARIATION 62 (SANGER UK)
  3                ENSEMBL FUNCTIONAL GENOMICS 62 (SANGER UK)
  4                                      VEGA 42  (SANGER UK)
  5                               ENSEMBL BACTERIA 9 (EBI UK)
  6                                  ENSEMBL FUNGI 9 (EBI UK)
  7                        ENSEMBL FUNGI VARIATION 9 (EBI UK)
  8                                ENSEMBL METAZOA 9 (EBI UK)
  9                      ENSEMBL METAZOA VARIATION 9 (EBI UK)
  10                                ENSEMBL PLANTS 9 (EBI UK)
  11                      ENSEMBL PLANTS VARIATION 9 (EBI UK)
  12                              ENSEMBL PROTISTS 9 (EBI UK)
  13                    ENSEMBL PROTISTS VARIATION 9 (EBI UK)
  14                                             MSD (EBI UK)
  15                  WTSI MOUSE GENETICS PROJECT (SANGER UK)
  16                                       REACTOME (CSHL US)
  17                                   WORMBASE 220 (CSHL US)
  ...





The names of the databases are listed, and then an explanation of what each
database is, and what is the version of the database.

You will see that the “biomaRt” R package can actually be used to
query many different databases including WormBase, UniProt,
Ensembl, etc.

Here, we will discuss using the
“biomaRt” package to query the Ensembl database, but it is worth
remembering that it also be used to perform queries on other
databases such as UniProt.

You can see above that “biomaRt” tells
you which version of each database can be searched, for example,
the version of the main Ensembl database that can be searched is Ensembl 62 (the current
release), while the version of the Ensembl Protists database that can be searched is
Ensembl Protists 9.

If you want to perform a query on the Ensembl database using
“biomaRt”, you first need to specify that this is the database that
you want to query. You can do this using the useMart() function
from the “biomaRt” package:

> ensemblprotists <- useMart("protist_mart_9") # Specify that we want to query the Ensembl Protists database





This tells “biomaRt” that you want to query the Ensembl Protists database.
The Ensembl Protists database contains data sets of genomic information for
different protist species whose genomes have been fully sequenced.

To see which data sets you can
query in the database that you have selected (using useMart()), you
can type:

> listDatasets(ensemblprotists)         # List the data sets in the Ensembl Protists database
            dataset                                   description
  1      pramorum_eg_gene         Phytophthora ramorum genes (Phyra1_1)
  2        pvivax_eg_gene                Plasmodium vivax genes (EPr 2)
  3   pfalciparum_eg_gene           Plasmodium falciparum genes (2.1.4)
  4  ptricornutum_eg_gene      Phaeodactylum tricornutum genes (Phatr2)
  5     pchabaudi_eg_gene          Plasmodium chabaudi genes (May_2010)
  6   ddiscoideum_eg_gene Dictyostelium discoideum genes (dictybase.01)
  7        lmajor_eg_gene    Leishmania major strain Friedlin genes (1)
  ...
    version
  1      Phyra1_1
  2         EPr 2
  3         2.1.4
  4        Phatr2
  5      May_2010
  6  dictybase.01
  7             1
  ...





You will see a long list of the organisms for which the Ensembl Protists
database has genome data, including Plasmodium vivax and Plasmodium falciparium (which cause malaria),
and Leishmania major, which causes leishmaniasis [http://www.who.int/leishmaniasis/en/], which is
classified by the WHO as a neglected tropical disease.

To perform a query on the Ensembl database using the “biomaRt” R
package, you first need to specify which Ensembl data set your
query relates to. You can do this using the useDataset() function
from the “biomaRt” package. For example, to specify that you want
to perform a query on the Ensembl Leishmania major data set, you would type:

> ensemblleishmania <- useDataset("lmajor_eg_gene",mart=ensemblprotists)





Note that the name of the Leishmania major Ensembl data set is
“lmajor_eg_gene”; this is the data set listed for Leishmania major
genomic information when we typed listDatasets(ensemblprotists) above.

Once you have specified the particular Ensembl data set that you
want to perform a query on, you can perform the query using the
getBM() function from the “biomaRt” package.

Usually, you will want to perform a query to a particular set of features from the Leishmania major
Ensembl data set. What types of features can you search for? You
can find this out by using the listAttributes() function from the
“biomaRt” package:

> leishmaniaattributes <- listAttributes(ensemblleishmania)





The listAttributes() function returns a list object, the first
element of which is a vector of all possible features that you can
select, and the second element of which is a vector containing
explanations of all those features:

> attributenames <- leishmaniaattributes[[1]]
> attributedescriptions <- leishmaniaattributes[[2]]
> length(attributenames)                     # Find the length of vector "attributenames"
 [1] 292
> attributenames[1:10]                       # Print out the first 10 entries in vector "attributenames"
 [1] "ensembl_gene_id"                "ensembl_transcript_id"
 [3] "ensembl_peptide_id"             "canonical_transcript_stable_id"
 [5] "description"                    "chromosome_name"
 [7] "start_position"                 "end_position"
 [9] "strand"                         "band"
> attributedescriptions[1:10]                # Print out the first 10 entries in vector "attributedescriptions"
> attributedescriptions[1:10]
 [1] "Ensembl Gene ID"                   "Ensembl Transcript ID"
 [3] "Ensembl Protein ID"                "Canonical transcript stable ID(s)"
 [5] "Description"                       "Chromosome Name"
 [7] "Gene Start (bp)"                   "Gene End (bp)"
 [9] "Strand"                            "Band"





This gives us a very long list of 292 features in the Leishmania major Ensembl
data set that we can search for by querying the database, such as
genes, transcripts (mRNAs), peptides (proteins), chromosomes, GO (Gene Ontology) terms, and so on.

When you are performing a query on the Ensembl Leishmania major data set using
getBM(), you have to specify which of these features you want to
retrieve. For example, you can see from the output of
listAttributes() (see above) that one possible type of feature we
can search for are Leishmania major genes. To retrieve a list of all Leishmania major
genes from the Leishmania major Ensembl data set, we just need to type:

> leishmaniagenes <- getBM(attributes = c("ensembl_gene_id"), mart=ensemblleishmania)





This returns a list variable leishmaniagenes, the first element of which
is a vector containing the names of all Leishmania major genes. Thus, to find
the number of genes, and print out the names of the first ten genes
stored in the vector, we can type:

> leishmaniagenenames <- leishmaniagenes[[1]] # Get the vector of the names of all L. major genes
> length(leishmaniagenenames)
[1] 9379
> leishmaniagenenames[1:10]
[1] "LmjF.01.0010" "LmjF.01.0020" "LmjF.01.0030" "LmjF.01.0040" "LmjF.01.0050"
[6] "LmjF.01.0060" "LmjF.01.0070" "LmjF.01.0080" "LmjF.01.0090" "LmjF.01.0100"





This tells us that there are 9379 different Leishmania major genes in the
L. major Ensembl data set. Note that this includes various types of
genes including protein-coding genes (both “known” and “novel”
genes, where the “novel” genes are gene predictions that don’t have
sequence similarity to any sequences in sequence databases), RNA
genes, and pseudogenes.

What if we are only interested in protein-coding genes? If you look at the output
of listAttributes(ensemblleishmania), you will see that one of the features
is “gene_biotype”, which is tells us what sort of gene each gene
is (eg. protein-coding, pseudogene, etc.):

> leishmaniagenes2 <- getBM(attributes = c("ensembl_gene_id", "gene_biotype"), mart=ensemblleishmania)





In this case, the getBM() function will return a list variable
leishmaniagenes2, the first element of which is a vector containing the
names of all Leishmania major genes, and the second of which is a vector
containing the types of those genes:

> leishmaniagenenames2 <- leishmaniagenes2[[1]] # Get the vector of the names of all L. major genes
> leishmaniagenebiotypes2 <- leishmaniagenes2[[2]] # Get the vector of the biotypes of all genes





We can make a table of all the different types of genes using the
table() function:

> table(leishmaniagenebiotypes2)
  leishmaniagenebiotypes2
         ncRNA nontranslating_cds     protein_coding         pseudogene
            84                  2               8310                 90
          rRNA             snoRNA              snRNA               tRNA
            63                741                  6                 83





This tells us that there are 8310 protein-coding genes, 90
pseudogenes, and various types of RNA genes (tRNA genes, rRNA
genes, snRNA genes, etc.). Thus, there are 8310 human
protein-coding genes.




Comparing the number of genes in two species

Ensembl is a very useful resource for comparing the gene content of
different species. For example, one simple question that we can ask
by analysing the Ensembl data is: how many protein-coding genes are
there in Leishmania major, and how many in Plasmodium falciparum?

We know how many protein-coding genes are in Leishmania major (8310; see above), but what
about Plasmodium falciparum? To answer this question, we first need to tell the
“biomaRt” package that we want to make a query on the Ensembl Plasmodium falciparum
data set.

We can do this using the useDataset() function to select
the Plasmodium falciparum Ensembl data set.

> ensemblpfalciparum <- useDataset("pfalciparum_eg_gene",mart=ensemblprotists)





Note that the name of the Plasmodium falciparum Ensembl data set is
“pfalciparum_eg_gene”; this is the data set listed for Plasmodium falciparum
genomic information when we typed listDatasets(ensemblprotists) above.

We can then use getBM() as above to retrieve the names of all Plasmodium falciparum
protein-coding genes. This time we have to set the “mart” option in
the getBM() function to “ensemblpfalciparum”, to specify that we want to
query the Plasmodium falciparum Ensembl data set rather than the Leishmania major Ensembl data
set:

> pfalciparumgenes <- getBM(attributes = c("ensembl_gene_id", "gene_biotype"), mart=ensemblpfalciparum)
> pfalciparumgenenames <- pfalciparumgenes[[1]] # Get the names of the P. falciparum genes
> length(pfalciparumgenenames)                  # Get the number of P. falciparum genes
[1] 6213
> pfalciparumgenebiotypes <- pfalciparumgenes[[2]] # Get the types of the P. falciparum genes
> table(pfalciparumgenebiotypes)
  pfalciparumgenebiotypes
          ncRNA non_translating_cds      protein_coding                rRNA
            712                   1                5428                  24
          snRNA                tRNA
              3                  45





This tells us that there are 5428 Plasmodium falciparum protein-coding genes in
Ensembl. That is, Plasmodium falciparum seems to have less protein-coding
genes than Leishmania major (8310 protein-coding genes; see above).

It is interesting to ask: why does Plasmodium falciparum have less protein-coding
genes than Leishmania major? There are several possible explanations: (i) that
there have been gene duplications in the Leishmania major lineage since Leishmania
and Plasmodium shared a common ancestor, which gave rise to new Leishmania major
genes; (ii) that completely new genes (that are not related to any
other Leishmania major gene) have arisen in the Leishmania major lineage since Leishmania and
Plasmodium shared a common ancestor; or (iii) that there have been genes
lost from the Plasmodium falciparum genome since Leishmania and Plasmodium shared a common
ancestor.

To investigate which of these explanations is most likely to be
correct, we need to figure out how the Leishmania major protein-coding genes
are related to Plasmodium falciparum protein-coding genes.




Identifying homologous genes between two species

The Ensembl database groups homologous (related) genes together
into gene families. If a gene from Leishmania major and a gene from Plasmodium falciparum are
related, they should be placed together into the same Ensembl gene
family in the Ensembl Protists database. In fact, if a Leishmania major gene has any
homologues (related genes) in other protists, it should be placed into some Ensembl gene family
in the Ensembl Protists database.

For all Leishmania major and Plasmodium falciparum genes that are placed together in a gene
family, Ensembl classifies the relationship between each pair of
Leishmania major and Plasmodium falciparum genes as orthologues (related genes that shared a
common ancestor in the ancestor of Leishmania and Plasmodium, and arose due
to the Leishmania - Plasmodium speciation event) or paralogues (related genes
that arose due to a duplication event within a species, for
example, due to a duplication event in Leishmania major, or a duplication
event in the Leishmania - Plasmodium ancestor).

If you type listAttributes(ensemblleishmania) again, you will see that one
possible feature that you can search for is “pfalciparum_eg_gene”,
which is the Plasmodium falciparum orthologue of a Leishmania major gene.

Another possible feature that you can search for is
“pfalciparum_eg_orthology_type”, which describes the type of orthology
relationship between a particular Leishmania major gene and its Plasmodium falciparum
orthologue. For example, if a particular Leishmania major gene has two Plasmodium falciparum
orthologues, the relationship between the Leishmania major gene and each of
the Plasmodium falciparum orthologues will be “ortholog_one2many”
(one-to-many orthology).

This can arise in the case
where there was a duplication in the Plasmodium falciparum lineage after Plasmodium and
Leishmania diverged, which means that two different Plasmodium falciparum genes (which
are paralogues of each other) are both orthologues of the same
Leishmania major gene.

Therefore, we can retrive the Ensembl identifiers of the Plasmodium falciparum
orthologues of all Leishmania major genes by typing:

> leishmaniagenes <- getBM(attributes = c("ensembl_gene_id", "pfalciparum_eg_gene",
   "pfalciparum_eg_orthology_type"), mart=ensemblleishmania)





This will return an R list variable leishmaniagenes, the first element
of which is a vector of Ensembl identifiers for all Leishmania major
coding genes, and the second element of which is a vector
of Ensembl identifiers for their Plasmodium falciparum orthologues, and the third
element of which is a vector with information on the orthology
types.

We can print out the names of the first 10 Leishmania major genes and their
Plasmodium falciparum orthologues, and their orthology types, by typing:

> leishmaniagenenames <- leishmaniagenes[[1]]      # Get the names of all Leishmania major genes
> leishmaniaPforthologues <- leishmaniagenes[[2]]  # Get the P. falciparum orthologues of all L. major genes
> leishmaniaPforthologuetypes <- leishmaniagenes[[3]] # Get the orthology relationship type
> leishmaniagenenames[1:10]
  [1] "LmjF.34.2510" "LmjF.14.0650" "LmjF.14.0650" "LmjF.14.0670" "LmjF.14.0670"
  [6] "LmjF.14.0680" "LmjF.14.0680" "LmjF.14.0710" "LmjF.14.0710" "LmjF.36.2350"
> leishmaniaPforthologues[1:10]
  [1] ""         "PFA0455c" "PFI0980w" "PFA0455c" "PFI0980w" "PFA0455c"
  [7] "PFI0980w" "PFA0455c" "PFI0980w" ""
> leishmaniaPforthologuetypes[1:10]
  [1] ""                   "ortholog_many2many" "ortholog_many2many"
  [4] "ortholog_many2many" "ortholog_many2many" "ortholog_many2many"
  [7] "ortholog_many2many" "ortholog_many2many" "ortholog_many2many"
  [10] ""





Not all Leishmania major genes have Plasmodium falciparum orthologues; this is why
when we print out the first 10 elements of the vector leishmaniaPforthologues, some of the
elements are empty.

To find out how many Leishmania major genes have orthologues in Plasmodium falciparum,
we can first find the indices of the elements of the vector leishmaniaPforthologues that are empty:

> myindex <- leishmaniaPforthologues==""





We can then find out the names of the Leishmania gene genes corresponding to
those indices:

> leishmaniagenenames2 <- leishmaniagenenames[myindex]
> length(leishmaniagenenames2)
[1] 7723





This tells us that 7723 Leishmania major genes do not have Plasmodium falciparum
orthologues.

How many of the 7723 Leishmania major genes that do not have Plasmodium falaciparum
orthologues are protein-coding genes? To answer this question, we
can merge together the information in the R list variable
leishmaniagenes2 (which contains information on the name of each Leishmania major
gene and its type; see above), and the R list variable leishmaniagenes (which contains
information on the name of each L. major gene and its Plasmodium falciparum orthologues).

Remember that leishmaniagenes2 was created by typing:

> leishmaniagenes2 <- getBM(attributes = c("ensembl_gene_id", "gene_biotype"), mart=ensemblleishmania)





To combine leishmaniagenes and leishmaniagenes2, we can use
the merge() function in R, which can merge together
two list variables that contain some named elements in common (in
this case, both list variables contain a vector that has the names
of Leishmania major genes):

> leishmaniagenes3 <- merge(leishmaniagenes2, leishmaniagenes)





The first element of the merged list variable leishmaniagenes3 contains
a vector of the Leishmania major gene names, the second has a vector of the
types of those genes (eg. protein-coding, pseudogene etc.), and the
third element has a vector of the Plasmodium falciparum orthologues’ names. We can
therefore find out how many protein-coding Leishmania major genes lack Plasmodium falciparum
orthologues by typing:

> leishmaniagenenames <- leishmaniagenes3[[1]]
> leishmaniagenebiotypes <- leishmaniagenes3[[2]]
> leishmaniaPforthologues <- leishmaniagenes3[[3]]
> myindex <- leishmaniaPforthologues=="" & leishmaniagenebiotypes=="protein_coding"
> leishmaniagenenames2 <- leishmaniagenenames[myindex]
> length(leishmaniagenenames2)
[1] 6654





This tells us that there are 6654 Leishmania major protein-coding genes that
lack Plasmodium falciparum orthologues.




Summary

In this practical, you will have learnt to use the following R
functions:


	useMart() to select a database to query (in the biomaRt package)

	useDataset() to select a data set in a database to query (in the biomaRt package)

	listDatasets() to get a list of all data sets in a database (in the biomaRt package)

	listAttributes() to get a list of all features of a data set (in the biomaRt package)

	getBM() to make a query on a database (in the biomaRt package)

	merge() to merge R list objects that contain some named elements in common






Links and Further Reading

Some links are included here for further reading.

For background reading on comparative genomics, it is recommended
to read Chapter 8 of
Introduction to Computational Genomics: a case studies approach
by Cristianini and Hahn (Cambridge University Press;
www.computational-genomics.net/book/ [http://www.computational-genomics.net/book/]).

For more information and examples on using the biomaRt R package, see
the biomaRt package website [http://www.bioconductor.org/packages/release/bioc/html/biomaRt.html].

For a more in-depth introduction to R, a good online tutorial is
available on the “Kickstarting R” website,
cran.r-project.org/doc/contrib/Lemon-kickstart [http://cran.r-project.org/doc/contrib/Lemon-kickstart/].

There is another nice (slightly more in-depth) tutorial to R
available on the “Introduction to R” website,
cran.r-project.org/doc/manuals/R-intro.html [http://cran.r-project.org/doc/manuals/R-intro.html].
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Exercises

Answer the following questions, using the R package. For each
question, please record your answer, and what you typed into R to
get this answer.

Model answers to the exercises are given in
Answers to the exercises on Comparative Genomics.


	Q1. How many Mycobacterium ulcerans genes are there in the current version of the Ensembl Bacteria database?

	Note: the bacterium Mycobacterium ulcerans causes Buruli ulcer [http://www.who.int/buruli/en/], which is classified by the WHO as a neglected tropical disease.



Q2. How many of the Mycobacterium ulcerans Ensembl genes are protein-coding genes?


	Q3. How many Mycobacterium ulcerans protein-coding genes have Mycobacterium leprae orthologues?

	Note: Mycobacterium leprae is the bacterium that causes leprosy [http://www.who.int/lep/en/], which is classified by the WHO as a neglected tropical disease.



Q4. How many of the*Mycobacterium ulcerans* protein-coding genes have one-to-one orthologues in Mycobacterium leprae?

Q5. How many Mycobacterium ulcerans genes have Pfam domains?

Q6. What are the top 5 most common Pfam domains in Mycobacterium ulcerans genes?

Q7. How many copies of each of the top 5 domains found in Q6 are there in the Mycobacterium ulcerans protein set?

Q8. How many of copies are there in the Mycobacterium lepraae protein set, of each of the top 5 Mycobacterium ulcerans Pfam protein domains?

Q9. Are the numbers of copies of some domains different in the two species?

Q10. Of the differences found in Q9, are any of the differencess statistically significant?







          

      

      

    

  

    
      
          
            
  
Hidden Markov Models


A little more about R

In previous practicals, you learnt how to create different types of
variables in R such as scalars, vectors and lists. Sometimes it is
useful to create a variable before you actually need to store any
data in the variable. To create a vector without actually storing
any data in it, you can use the numeric() command to create a
vector for storing numbers, or the character() command to create a
vector for storing characters (eg. “A”, “hello”, etc.) For example,
you may want to create a vector variable for storing the square of
a number, and then store numbers in its elements afterwards:

> myvector <- numeric()                  # Create a vector "myvector" for storing numbers
> for (i in 1:10) { myvector[i] <- i*i } # Fill in the values in the vector "myvector"
> myvector                               # Print out the vector "myvector"
[1]   1   4   9  16  25  36  49  64  81 100





Note that if you try to store numbers in the elements of a vector
that you have not yet created, you will get an error message, for
example:

> for (i in 1:10) { avector[i] <- i*i }  # Try to store values in the vector "avector"
Error in avector[i] <- i * i : object 'avector' not found





Another very useful type of variable is a matrix. You can create a
matrix in R using the matrix() command. If you look at the help
page for the matrix() command, you will see that its arguments
(inputs) are the data to store in the matrix, the number of rows to
store it in, the number of columns to store it in, and whether to
fill the matrix with data column-by-column or row-by-row. For
example, say you have the heights and weights of eight patients in
a hospital in two different vectors:

> heights <- c(180, 170, 175, 160, 183, 177, 179, 182)
> weights <- c(90, 88, 100, 68, 95, 120, 88, 93)





To store this data in a matrix that has one column per person, and
one row for heights and one row for weights, we type:

> mymatrix <- matrix(c(heights,weights), 2, 8, byrow=TRUE)
> mymatrix # Print out the matrix
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,]  180  170  175  160  183  177  179  182
[2,]   90   88  100   68   95  120   88   93





We needed to use the argument “byrow=TRUE” to tell the matrix()
command to fill the matrix row-by-row (ie. to put the values from
the vector heights into the first row of the matrix, and the
values from the vector weights into the second row of the
matrix).

You can assign names to the rows and columns of a matrix using the
rownames() and colnames() commands, respectively. For example, to
assign names to the rows and columns of matrix mymatrix, you
could type:

> rownames(mymatrix) <- c("height", "weight")
> colnames(mymatrix) <- c("patient1", "patient2", "patient3", "patient4", "patient5", "patient6", "patient7", "patient8")
> mymatrix # Print out the matrix now
patient1 patient2 patient3 patient4 patient5 patient6 patient7 patient8
height      180      170      175      160      183      177      179      182
weight       90       88      100       68       95      120       88       93





Once you have created a matrix, you can access the values in the
elements of the matrix by using square brackets containing the
indices of the row and column of the element. For example, if you
want to access the value in the second row and fourth column of
matrix mymatrix, you can type:

> mymatrix[2,4]
[1] 68





If you want to access all the values in a particular row of the
matrix, you can just type the index for the row, and leave out the
index for the column. For example, if you want to get the values in
the second row of the matrix mymatrix, type:

> mymatrix[2,]
patient1 patient2 patient3 patient4 patient5 patient6 patient7 patient8
90       88      100       68       95      120       88       93





Likewise, if you want to get the values in a particular column of a
matrix, leave out the index for the row, and just type the column
index. For example, if you want to get the values in the fourth row
of the mymatrix, type:

> mymatrix[,4]
height weight
160     68








A multinomial model of DNA sequence evolution

The simplest model of DNA sequence evolution assumes that the
sequence has been produced by a random process that randomly chose
any of the four nucleotides at each position in the sequence, where
the probability of choosing any one of the four nucleotides depends
on a predetermined probability distribution. That is, the four
nucleotides are chosen with pA, pC,
pG, and pT respectively. This is known as
the multinomial sequence model.

A multinomial model for DNA sequence evolution has four parameters:
the probabilities of the four nucleotides pA,
pC, pG, and pT. For example,
say we may create a multinomial model where pA=0.2,
pC=0.3, pG=0.3, and pT=0.2.
This means that the probability of choosing a A at any particular
sequence position is set to be 0.2, the probability of choosing a C
is 0.3, of choosing a G is 0.3, and of choosing a T is 0.2. Note
that pA + pC + pG +
pT = 1, as the sum of the probabilities of the four
different types of nucleotides must be equal to 1, as there are
only four possible types of nucleotide.

The multinomial sequence model is like having a roulette wheel that
is divided into four different slices labelled “A”, “T”, “G” and
“C”, where the pA, pT, pGand pC are the fractions of the wheel taken up by the
slices with these four labels. If you spin the arrow attached to
the centre of the roulette wheel, the probability that it will stop
in the slice with a particular label (eg. the slice labelled “A”)
only depends on the fraction of the wheel taken up by that slice
(pA here; see the picture below).

[image: image0]




Generating a DNA sequence using a multinomial model

We can use R to generate a DNA sequence using a particular
multinomial model. First we need to set the values of the four
parameters of the multinomial model, the probabilities
pA, pC, pG, and
pT of choosing the nucleotides A, C, G and T,
respectively, at a particular position in the DNA sequence. For
example, say we decide to set pA=0.2,
pC=0.3, pG=0.3, and pT=0.2.
We can use the function sample() in R to generate a DNA sequence of
a certain length, by selecting a nucleotide at each position
according to this probability distribution:

> nucleotides    <- c("A", "C", "G", "T") # Define the alphabet of nucleotides
> probabilities1 <- c(0.2, 0.3, 0.3, 0.2) # Set the values of the probabilities
> seqlength      <- 30                    # Set the length of the sequence
> sample(nucleotides, seqlength, rep=TRUE, prob=probabilities1) # Generate a sequence
[1] "A" "C" "T" "G" "T" "T" "T" "T" "A" "G" "T" "C" "A" "G" "G" "G" "G" "C" "G"
[20] "C" "G" "T" "C" "C" "G" "G" "C" "A" "G" "C"





If you look at the help page for the function(), you will find that
its inputs are the vector to sample from (nucleotides here), the
size of the sample (seqlength here), and a vector of
probabilities for obtaining the elements of the vector being
sampled (probabilities1 here). If we use the sample() function to
generate a sequence again, it will create a different sequence
using the same multinomial model:

> sample(nucleotides, seqlength, rep=TRUE, prob=probabilities1) # Generate another sequence
[1] "T" "G" "C" "T" "A" "T" "G" "G" "T" "C" "G" "A" "A" "T" "G" "G" "G" "G" "C"
[20] "T" "A" "A" "C" "C" "G" "A" "G" "G" "C" "G"





In the same way, we can generate a sequence using a different
multinomial model, where pA=0.1, pC=0.41,
pG=0.39, and pT=0.1:

> probabilities2 <- c(0.1, 0.41, 0.39, 0.1) # Set the values of the probabilities for the new model
> sample(nucleotides, seqlength, rep=TRUE, prob=probabilities2) # Generate a sequence
[1] "G" "C" "C" "T" "C" "C" "C" "C" "G" "G" "G" "G" "G" "A" "C" "C" "C" "A" "G"
[20] "A" "G" "C" "T" "C" "G" "G" "C" "G" "G" "C"





As you would expect, the sequences generated using this second
multinomial model have a higher fraction of Cs and Gs compared to
the sequences generated using the first multinomial model above.
This is because pC and GT are higher for
this second model than for the first model (pC=0.41
and GT=0.39 in the second model, versus
pC=0.3 and GT=0.3 in the first model).
That is, in the second multinomial model we are using a roulette
wheel that has large slices labelled “C” and “G”, while in the
first multinomial model we were using a roulette wheel with
relatively smaller slices labelled “C” and “G” (see the picture
below).
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A Markov model of DNA sequence evolution

A multinomial model of DNA sequence evolution is a good model of
the evolution of many DNA sequences. However, for some DNA
sequences, a multinomial model is not an accurate representation of
how the sequences have evolved. One reason is that a multinomial
model assumes that each part of the sequence (eg. the first 100
nucleotides of the sequence, the second 100 nucleotides, the third
100 nucleotides, etc.) have the same frequency of each type of
nucleotide (the same pA, pC,
pG, and pT), and this may not be true for
a particular DNA sequence if there are considerable differences in
nucleotide frequencies in different parts of the sequence.

Another assumption of a multinomial model of DNA sequence evolution
is that the probability of choosing a particular nucleotide (eg.
“A”) at a particular position in the sequence only depends on the
predetermined frequency of that nucleotide (pA here),
and does not depend at all on the nucleotides found at adjacent
positions in the sequence. This assumption holds true for many DNA
sequences. However, for some DNA sequences, it is not true, because
the probability of finding a particular nucleotide at a particular
position in the sequence does depend on what nucleotides are
found at adjacent positions in the sequence. In this case, a
different type of DNA sequence model called a
Markov sequence model is a more accurate representation of the
evolution of the sequence.

A Markov sequence model assumes that the sequence has been produced
by a process that chose any of the four nucleotides in the
sequence, where the probability of choosing any one of the four
nucleotides at a particular position depends on the nucleotide
chosen for the previous position. That is, if “A” was chosen at the
previous position, then the probability of choosing any one of the
four nucleotides at the current position depends on a predetermined
probability distribution. That is, given that “A” was chosen at the
previous position, the four nucleotides are chosen at the current
position with probabilities of pA, pC,
pG, and pT of choosing “A”, “C”, “G”, or
“T”, respectively (eg. pA=0.2, pC=0.3,
pG=0.3, and pT=0.2). In contrast, if “C”
was chosen at the previous position, then the probability of
choosing any one of the four nucleotides at the current position
depends on a different predetermined probability distribution, that
is, the probabilities of choosing “A”, “C”, “G”, or “T” at the
current position are now different (eg. pA=0.1,
pC=0.41, pG=0.39, and
pT=0.1).

A Markov sequence model is like having four different roulette
wheels, labelled “afterA”, “afterT”, “afterG”, and “afterC”, for
the cases when “A”, “T”, “G”, or “C” were chosen at the previous
position in a sequence, respectively. Each of the four roulette
wheels has four slices labelled “A”, “T”, “G”, and “C”, but in each
roulette wheel a different fraction of the wheel is taken up by the
four slices. That is, each roulette wheel has a different
pA, pT, pG and
pC. If we are generating a new DNA sequence using a
Markov sequence model, to decide what nucleotide to choose at a
particular position in the sequence, you spin the arrow at the
centre of a roulette wheel, and see in which slice the arrow stops.
There are four roulette wheels, and the particular roulette wheel
we use at a particular position in the sequence depends on the
nucleotide chosen for the previous position in the sequence. For
example, if “T” was chosen at the previous position, we use the
“afterT” roulette wheel to choose the nucleotide for the current
position. The probability of choosing a particular nucleotide at
the current position (eg. “A”) then depends on the fraction of the
“afterT” roulette wheel taken up by the the slice labelled with
that nucleotide (pA here; see the picture below).
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The transition matrix for a Markov model

A multinomial model of DNA sequence evolution just has four
parameters: the probabilities pA, pC,
pG, and pT. In contrast, a Markov model
has many more parameters: four sets of probabilities
pA, pC, pG, and
pT, that differ according to whether the previous
nucleotide was “A”, “G”, “T” or “C”. The symbols pAA,
pAC, pAG, and pAT are
usually used to represent the four probabilities for the case where
the previous nucleotide was “A”, the symbols pCA,
pCC, pCG, and pCT for the
case when the previous nucleotide was “C”, and so on.

It is common to store the probability parameters for a Markov model
of a DNA sequence in a square matrix, which is known as a
Markov transition matrix. The rows of the transition matrix
represent the nucleotide found at the previous position in the
sequence, while the columns represent the nucleotides that could be
found at the current position in the sequence. In R, you can create
a matrix using the matrix() command, and the rownames() and
colnames() functions can be used to label the rows and columns of
the matrix. For example, to create a transition matrix, we type:

> nucleotides         <- c("A", "C", "G", "T") # Define the alphabet of nucleotides
> afterAprobs <- c(0.2, 0.3, 0.3, 0.2)         # Set the values of the probabilities, where the previous nucleotide was "A"
> afterCprobs <- c(0.1, 0.41, 0.39, 0.1)       # Set the values of the probabilities, where the previous nucleotide was "C"
> afterGprobs <- c(0.25, 0.25, 0.25, 0.25)     # Set the values of the probabilities, where the previous nucleotide was "G"
> afterTprobs <- c(0.5, 0.17, 0.17, 0.17)      # Set the values of the probabilities, where the previous nucleotide was "T"
> mytransitionmatrix <- matrix(c(afterAprobs, afterCprobs, afterGprobs, afterTprobs), 4, 4, byrow = TRUE) # Create a 4 x 4 matrix
> rownames(mytransitionmatrix) <- nucleotides
> colnames(mytransitionmatrix) <- nucleotides
> mytransitionmatrix                           # Print out the transition matrix
A    C    G    T
A 0.20 0.30 0.30 0.20
C 0.10 0.41 0.39 0.10
G 0.25 0.25 0.25 0.25
T 0.50 0.17 0.17 0.17





Rows 1, 2, 3 and 4 of the transition matrix give the probabilities
pA, pC, pG, and
pT for the cases where the previous nucleotide was
“A”, “C”, “G”, or “T”, respectively. That is, the element in a
particular row and column of the transition matrix (eg. the row for
“A”, column for “C”) holds the probability (pAC) of
choosing a particular nucleotide (“C”) at the current position in
the sequence, given that was a particular nucleotide (“A”) at the
previous position in the sequence.




Generating a DNA sequence using a Markov model

Just as you can generate a DNA sequence using a particular
multinomial model, you can generate a DNA sequence using a
particular Markov model. When you are generating a DNA sequence
using a Markov model, the nucleotide chosen at each position at the
sequence depends on the nucleotide chosen at the previous position.
As there is no previous nucleotide at the first position in the new
sequence, we need to define the probabilities of choosing “A”, “C”,
“G” or “T” for the first position. The symbols ΠA,
ΠC, ΠG, and ΠT are used to
represent the probabilities of choosing “A”, “C”, “G”, or “T” at
the first position.

We can define an R function generatemarkovseq() to generate a DNA
sequence using a particular Markov model:

> generatemarkovseq <- function(transitionmatrix, initialprobs, seqlength)
{
nucleotides     <- c("A", "C", "G", "T") # Define the alphabet of nucleotides
mysequence      <- character()           # Create a vector for storing the new sequence
# Choose the nucleotide for the first position in the sequence:
firstnucleotide <- sample(nucleotides, 1, rep=TRUE, prob=initialprobs)
mysequence[1]   <- firstnucleotide       # Store the nucleotide for the first position of the sequence
for (i in 2:seqlength)
{
prevnucleotide <- mysequence[i-1]     # Get the previous nucleotide in the new sequence
# Get the probabilities of the current nucleotide, given previous nucleotide "prevnucleotide":
probabilities  <- transitionmatrix[prevnucleotide,]
# Choose the nucleotide at the current position of the sequence:
nucleotide     <- sample(nucleotides, 1, rep=TRUE, prob=probabilities)
mysequence[i]  <- nucleotide          # Store the nucleotide for the current position of the sequence
}
return(mysequence)
}





The function generatemarkovseq() takes as its arguments (inputs)
the transition matrix for the particular Markov model; a vector
containing the values of ΠA, ΠC,
ΠG, and ΠT; and the length of the DNA
sequence to be generated.

The probabilities of choosing each of the four nucleotides at the
first position in the sequence are ΠA,
ΠC, ΠG, and ΠT. The
probabilities of choosing each of the four nucleotides at the
second position in the sequence depend on the particular nucleotide
that was chosen at the first position in the sequence. The
probabilities of choosing each of the four nucleotides at the third
position depend on the nucleotide chosen at the second position,
and so on.

We can use the generatemarkovseq() function to generate a sequence
using a particular Markov model. For example, to create a sequence
of 30 nucleotides using the Markov model described in the
transition matrix mytransitionmatrix, using uniform starting
probabilities (ie. ΠA = 0.25, ΠC = 0.25,
ΠG = 0.25, and ΠT = 0.25) , we type:

> myinitialprobs <- c(0.25, 0.25, 0.25, 0.25)
> generatemarkovseq(mytransitionmatrix, myinitialprobs, 30)
[1] "A" "T" "C" "G" "G" "G" "G" "A" "T" "A" "T" "A" "T" "A" "G" "C" "G" "C" "T" "C" "C" "C" "G"
[24] "A" "C" "A" "A" "A" "T" "C"





As you can see, there are many “A”s after “T”s in the sequence.
This is because pTA has a high value (0.5) in the
Markov transition matrix mytransitionmatrix. Similarly, there are
few “A”s or “T”s after “C”s, which is because pCA and
pCT have low values (0.1) in this transition matrix.




A Hidden Markov Model of DNA sequence evolution

In a Markov model, the nucleotide at a particular position in a
sequence depends on the nucleotide found at the previous position.
In contrast, in a Hidden Markov model (HMM), the nucleotide found
at a particular position in a sequence depends on the state at
the previous nucleotide position in the sequence. The state at a
sequence position is a property of that position of the sequence,
for example, a particular HMM may model the positions along a
sequence as belonging to either one of two states, “GC-rich” or
“AT-rich”. A more complex HMM may model the positions along a
sequence as belonging to many different possible states, such as
“promoter”, “exon”, “intron”, and “intergenic DNA”.

A HMM is like having several different roulette wheels, one
roulette wheel for each state in the HMM, for example, a “GC-rich”
and an “AT-rich” roulette wheel. Each of the roulette wheels has
four slices labelled “A”, “T”, “G”, and “C”, and in each roulette
wheel a different fraction of the wheel is taken up by the four
slices. That is, the “GC-rich” and “AT-rich” roulette wheels have
different pA, pT, pG and
pC values. If we are generating a new DNA sequence
using a HMM, to decide what nucleotide to choose at a particular
sequence position, we spin the arrow of a particular roulette
wheel, and see in which slice it stops.

How do we decide which roulette wheel to use? Well, if there are
two roulette wheels, we tend to use the same roulette wheel that we
used to choose the previous nucleotide in the sequence, but there
is also a certain small probability of switching to the other
roulette wheel. For example, if we used the “GC-rich” roulette
wheel to choose the previous nucleotide in the sequence, there may
be a 90% chance that we will use the “GC-rich” roulette wheel again
to choose the nucleotide at the current position, but a 10% chance
that we will switch to using the “AT-rich” roulette wheel to choose
the nucleotide at the current position. Likewise, if we used the
“AT-rich” roulette wheel to choose the nucleotide at the previous
position, there may be 70% chance that we will use the “AT-rich”
wheel again at this position, but a 30% chance that we will switch
to using the “GC-rich” roulette wheel to choose the nucleotide at
this position.
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The transition matrix and emission matrix for a HMM

A HMM has two important matrices that hold its parameters. The
first is the HMM transition matrix, which contains the
probabilities of switching from one state to another. For example,
in a HMM with two states, an AT-rich state and a GC-rich state, the
transition matrix will hold the probabilities of switching from the
AT-rich state to the GC-rich state, and of switching from the
GC-rich state to the AT-rich state. For example, if the previous
nucleotide was in the AT-rich state there may be a probability of
0.3 that the current nucleotide will be in the GC-rich state, and
if the previous nucleotide was in the GC-rich state there may be a
probability of 0.1 that the current nucleotide will be in the
AT-rich state:

> states              <- c("AT-rich", "GC-rich") # Define the names of the states
> ATrichprobs         <- c(0.7, 0.3)             # Set the probabilities of switching states, where the previous state was "AT-rich"
> GCrichprobs         <- c(0.1, 0.9)             # Set the probabilities of switching states, where the previous state was "GC-rich"
> thetransitionmatrix <- matrix(c(ATrichprobs, GCrichprobs), 2, 2, byrow = TRUE) # Create a 2 x 2 matrix
> rownames(thetransitionmatrix) <- states
> colnames(thetransitionmatrix) <- states
> thetransitionmatrix                            # Print out the transition matrix
AT-rich GC-rich
AT-rich     0.7     0.3
GC-rich     0.1     0.9





There is a row in the transition matrix for each of the possible
states at the previous position in the nucleotide sequence. For
example, in this transition matrix, the first row corresponds to
the case where the previous position was in the “AT-rich” state,
and the second row corresponds to the case where the previous
position was in the “GC-rich” state. The columns give the
probabilities of switching to different states at the current
position. For example, the value in the second row and first column
of the transition matrix above is 0.1, which is the probability of
switching to the AT-rich state, if the previous position of the
sequence was in the GC-rich state.

The second important matrix is the HMM emission matrix, which
holds the probabilities of choosing the four nucleotides “A”, “C”,
“G”, and “T”, in each of the states. In a HMM with an AT-rich state
and a GC-rich state, the emission matrix will hold the
probabilities of choosing each of the four nucleotides “A”, “C”,
“G” and “T” in the AT-rich state (for example,
pA=0.39, pC=0.1, pG=0.1, and
pT=0.41 for the AT-rich state), and the probabilities
of choosing “A”, “C”, “G”, and “T” in the GC-rich state (for
example, pA=0.1, pC=0.41,
pG=0.39, and pT=0.1 for the GC-rich
state).

> nucleotides         <- c("A", "C", "G", "T")   # Define the alphabet of nucleotides
> ATrichstateprobs    <- c(0.39, 0.1, 0.1, 0.41) # Set the values of the probabilities, for the AT-rich state
> GCrichstateprobs    <- c(0.1, 0.41, 0.39, 0.1) # Set the values of the probabilities, for the GC-rich state
> theemissionmatrix <- matrix(c(ATrichstateprobs, GCrichstateprobs), 2, 4, byrow = TRUE) # Create a 2 x 4 matrix
> rownames(theemissionmatrix) <- states
> colnames(theemissionmatrix) <- nucleotides
> theemissionmatrix                              # Print out the emission matrix
   A    C    G    T
AT-rich 0.39 0.10 0.10 0.41
GC-rich 0.10 0.41 0.39 0.10





There is a row in the emission matrix for each possible state, and
the columns give the probabilities of choosing each of the four
possible nucleotides when in a particular state. For example, the
value in the second row and third column of the emission matrix
above is 0.39, which is the probability of choosing a “G” when in
the “GC-rich state” (ie. when using the “GC-rich” roulette wheel).




Generating a DNA sequence using a HMM

The following function generatehmmseq() can be used to generate
a DNA sequence using a particular HMM. As its arguments (inputs), it requires the
parameters of the HMM: the HMM transmission matrix and HMM emission
matrix.

> # Function to generate a DNA sequence, given a HMM and the length of the sequence to be generated.
  generatehmmseq <- function(transitionmatrix, emissionmatrix, initialprobs, seqlength)
  {
     nucleotides     <- c("A", "C", "G", "T")   # Define the alphabet of nucleotides
     states          <- c("AT-rich", "GC-rich") # Define the names of the states
     mysequence      <- character()             # Create a vector for storing the new sequence
     mystates        <- character()             # Create a vector for storing the state that each position in the new sequence
                                                # was generated by
     # Choose the state for the first position in the sequence:
     firststate      <- sample(states, 1, rep=TRUE, prob=initialprobs)
     # Get the probabilities of the current nucleotide, given that we are in the state "firststate":
     probabilities   <- emissionmatrix[firststate,]
     # Choose the nucleotide for the first position in the sequence:
     firstnucleotide <- sample(nucleotides, 1, rep=TRUE, prob=probabilities)
     mysequence[1]   <- firstnucleotide         # Store the nucleotide for the first position of the sequence
     mystates[1]     <- firststate              # Store the state that the first position in the sequence was generated by

     for (i in 2:seqlength)
     {
        prevstate    <- mystates[i-1]           # Get the state that the previous nucleotide in the sequence was generated by
        # Get the probabilities of the current state, given that the previous nucleotide was generated by state "prevstate"
        stateprobs   <- transitionmatrix[prevstate,]
        # Choose the state for the ith position in the sequence:
        state        <- sample(states, 1, rep=TRUE, prob=stateprobs)
        # Get the probabilities of the current nucleotide, given that we are in the state "state":
        probabilities <- emissionmatrix[state,]
        # Choose the nucleotide for the ith position in the sequence:
        nucleotide   <- sample(nucleotides, 1, rep=TRUE, prob=probabilities)
        mysequence[i] <- nucleotide             # Store the nucleotide for the current position of the sequence
        mystates[i]  <- state                   # Store the state that the current position in the sequence was generated by
     }

     for (i in 1:length(mysequence))
     {
        nucleotide   <- mysequence[i]
        state        <- mystates[i]
        print(paste("Position", i, ", State", state, ", Nucleotide = ", nucleotide))
     }
  }





When you are generating a DNA sequence using a HMM, the nucleotide
is chosen at each position depending on the state at the previous
position in the sequence. As there is no previous nucleotide at the
first position in the sequence, the function generatehmmseq() also
requires the probabilities of the choosing each of the states at
the first position (eg. ΠAT-rich and
ΠGC-rich being the probability of the choosing the
“AT-rich” or “GC-rich” states at the first position for a HMM with
these two states).

We can use the generatehmmseq() function to generate a sequence
using a particular HMM. For example, to create a sequence of 30
nucleotides using the HMM with “AT-rich” and “GC-rich” states
described in the transition matrix thetransitionmatrix, the
emission matrix theemissionmatrix, and uniform starting
probabilities (ie. ΠAT-rich = 0.5,
ΠGC-rich = 0.5), we type:

> theinitialprobs <- c(0.5, 0.5)
> generatehmmseq(thetransitionmatrix, theemissionmatrix, theinitialprobs, 30)
[1] "Position 1 , State AT-rich , Nucleotide =  A"
[1] "Position 2 , State AT-rich , Nucleotide =  A"
[1] "Position 3 , State AT-rich , Nucleotide =  G"
[1] "Position 4 , State AT-rich , Nucleotide =  C"
[1] "Position 5 , State AT-rich , Nucleotide =  G"
[1] "Position 6 , State AT-rich , Nucleotide =  T"
[1] "Position 7 , State GC-rich , Nucleotide =  G"
[1] "Position 8 , State GC-rich , Nucleotide =  G"
[1] "Position 9 , State GC-rich , Nucleotide =  G"
[1] "Position 10 , State GC-rich , Nucleotide =  G"
[1] "Position 11 , State GC-rich , Nucleotide =  C"
[1] "Position 12 , State GC-rich , Nucleotide =  C"
[1] "Position 13 , State GC-rich , Nucleotide =  C"
[1] "Position 14 , State GC-rich , Nucleotide =  C"
[1] "Position 15 , State GC-rich , Nucleotide =  G"
[1] "Position 16 , State GC-rich , Nucleotide =  G"
[1] "Position 17 , State GC-rich , Nucleotide =  C"
[1] "Position 18 , State GC-rich , Nucleotide =  G"
[1] "Position 19 , State GC-rich , Nucleotide =  A"
[1] "Position 20 , State GC-rich , Nucleotide =  C"
[1] "Position 21 , State GC-rich , Nucleotide =  A"
[1] "Position 22 , State AT-rich , Nucleotide =  T"
[1] "Position 23 , State GC-rich , Nucleotide =  G"
[1] "Position 24 , State GC-rich , Nucleotide =  G"
[1] "Position 25 , State GC-rich , Nucleotide =  G"
[1] "Position 26 , State GC-rich , Nucleotide =  G"
[1] "Position 27 , State GC-rich , Nucleotide =  T"
[1] "Position 28 , State GC-rich , Nucleotide =  G"
[1] "Position 29 , State GC-rich , Nucleotide =  T"
[1] "Position 30 , State GC-rich , Nucleotide =  C"





As you can see, the nucleotides generated by the GC-rich state are
mostly but not all “G”s and “C”s (because of the high values of
pG and pC for the GC-rich state in the
HMM emission matrix), while the nucleotides generated by the
AT-rich state are mostly but not all “A”s and “T”s (because of the
high values of pT and pA for the AT-rics
state in the HMM emission matrix).

Furthermore, there tends to be runs of nucleotides that are either
all in the GC-rich state or all in the AT-rich state, as the
transition matrix specifies that the probabilities of switching
from the AT-rich to GC-rich state (probability 0.3), or GC-rich to
AT-rich state (probability 0.1) are relatively low.




Inferring the states of a HMM that generated a DNA sequence

If we have a HMM with two states, “GC-rich” and “AT-rich”, and we
know the transmission and emission matrices of the HMM, can we take
some new DNA sequence, and figure out which state (GC-rich or
AT-rich) is the most likely to have generated each nucleotide
position in that DNA sequence? This is a common problem in
bioinformatics. It is called the problem of finding the
most probable state path, as it essentially consists of assigning
the most likely state to each position in the DNA sequence. The
problem of finding the most probable state path is also sometimes
called segmentation. For example, give a DNA sequence of 1000
nucleotides, you may wish to use your HMM to segment the sequence
into blocks that were probably generated by the “GC-rich” state or
by the “AT-rich” state.

The problem of finding the most probable state path given a HMM and
a sequence (ie. the problem of segmenting a sequence using a
HMM), can be solved by an algorithm called the Viterbi algorithm.
As its output, the Viterbi algorithm gives for each nucleotide
position in a DNA sequence, the state of your HMM that most
probably generated the nucleotide in that position. For example, if
you segmented a particular DNA sequence of 1000 nucleotides using a
HMM with “AT-rich” and “GC-rich” states, the Viterbi algorithm may
tell you that nucleotides 1-343 were most probably generated by the
AT-rich state, nucleotides 344-900 were most probably generated by
the GC-rich state, and 901-1000 were most probably generated by the
AT-rich state.

The following function viterbi() is a function for the Viterbi algorithm:

> viterbi <- function(sequence, transitionmatrix, emissionmatrix)
  # This carries out the Viterbi algorithm.
  # Adapted from "Applied Statistics for Bioinformatics using R" by Wim P. Krijnen, page 209
  # ( cran.r-project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf )
  {
     # Get the names of the states in the HMM:
     states <- rownames(theemissionmatrix)

     # Make the Viterbi matrix v:
     v <- makeViterbimat(sequence, transitionmatrix, emissionmatrix)

     # Go through each of the rows of the matrix v (where each row represents
     # a position in the DNA sequence), and find out which column has the
     # maximum value for that row (where each column represents one state of
     # the HMM):
     mostprobablestatepath <- apply(v, 1, function(x) which.max(x))

     # Print out the most probable state path:
     prevnucleotide <- sequence[1]
     prevmostprobablestate <- mostprobablestatepath[1]
     prevmostprobablestatename <- states[prevmostprobablestate]
     startpos <- 1
     for (i in 2:length(sequence))
     {
        nucleotide <- sequence[i]
        mostprobablestate <- mostprobablestatepath[i]
        mostprobablestatename <- states[mostprobablestate]
        if (mostprobablestatename != prevmostprobablestatename)
        {
           print(paste("Positions",startpos,"-",(i-1), "Most probable state = ", prevmostprobablestatename))
           startpos <- i
        }
        prevnucleotide <- nucleotide
        prevmostprobablestatename <- mostprobablestatename
     }
     print(paste("Positions",startpos,"-",i, "Most probable state = ", prevmostprobablestatename))
   }





The viterbi() function requires a second function makeViterbimat():

> makeViterbimat <- function(sequence, transitionmatrix, emissionmatrix)
  # This makes the matrix v using the Viterbi algorithm.
  # Adapted from "Applied Statistics for Bioinformatics using R" by Wim P. Krijnen, page 209
  # ( cran.r-project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf )
  {
     # Change the sequence to uppercase
     sequence <- toupper(sequence)
     # Find out how many states are in the HMM
     numstates <- dim(transitionmatrix)[1]
     # Make a matrix with as many rows as positions in the sequence, and as many
     # columns as states in the HMM
     v <- matrix(NA, nrow = length(sequence), ncol = dim(transitionmatrix)[1])
     # Set the values in the first row of matrix v (representing the first position of the sequence) to 0
     v[1, ] <- 0
     # Set the value in the first row of matrix v, first column to 1
     v[1,1] <- 1
     # Fill in the matrix v:
     for (i in 2:length(sequence)) # For each position in the DNA sequence:
     {
        for (l in 1:numstates) # For each of the states of in the HMM:
        {
           # Find the probabilility, if we are in state l, of choosing the nucleotide at position in the sequence
           statelprobnucleotidei <- emissionmatrix[l,sequence[i]]

           # v[(i-1),] gives the values of v for the (i-1)th row of v, ie. the (i-1)th position in the sequence.
           # In v[(i-1),] there are values of v at the (i-1)th row of the sequence for each possible state k.
           # v[(i-1),k] gives the value of v at the (i-1)th row of the sequence for a particular state k.

           # transitionmatrix[l,] gives the values in the lth row of the transition matrix, xx should not be transitionmatrix[,l]?
           # probabilities of changing from a previous state k to a current state l.

           # max(v[(i-1),] * transitionmatrix[l,]) is the maximum probability for the nucleotide observed
           # at the previous position in the sequence in state k, followed by a transition from previous
           # state k to current state l at the current nucleotide position.

           # Set the value in matrix v for row i (nucleotide position i), column l (state l) to be:
           v[i,l] <-  statelprobnucleotidei * max(v[(i-1),] * transitionmatrix[,l])
        }
    }
    return(v)
  }





Given a HMM, and a particular DNA sequence, you can use the Viterbi function to find the state of
that HMM that was most likely to have generated the nucleotide at
each position in the DNA sequence:

> myseq <- c("A", "A", "G", "C", "G", "T", "G", "G", "G", "G", "C", "C", "C", "C", "G", "G", "C", "G", "A", "C", "A", "T", "G", "G", "G", "G", "T", "G", "T", "C")
> viterbi(myseq, thetransitionmatrix, theemissionmatrix)
[1] "Positions 1 - 2 Most probable state =  AT-rich"
[1] "Positions 3 - 21 Most probable state =  GC-rich"
[1] "Positions 22 - 22 Most probable state =  AT-rich"
[1] "Positions 23 - 23 Most probable state =  GC-rich"








A Hidden Markov Model of protein sequence evolution

We have so far talked about using HMMs to model DNA sequence
evolution. However, it is of course possible to use HMMs to model
protein sequence evolution. When using a HMM to model DNA sequence
evolution, we may have states such as “AT-rich” and “GC-rich”.
Similarly, when using a HMM to model protein sequence evolution, we
may have states such as “hydrophobic” and “hydrophilic”. In a
protein HMM with “hydrophilic” and “hydrophilic” states, the
“hydrophilic” HMM will have probabilities pA,
pR, pC... of choosing each of the 20
amino acids alanine (A), arginine (R), cysteine (C), etc. when in
that state. Similarly, the “hydrophilic” state will have different
probabilities pA, pR, pC...
of choosing each of the 20 amino acids. The probability of choosing
a hydrophobic amino acid such as alanine will be higher in the
“hydrophobic” state than in the “hydrophilic” state (ie.
pA of the “hydrophobic” state will be higher than the
pA of of the “hydrophilic” state, where A represents
alanine here). A HMM of protein sequence evolution also defines a
certain probability of switching from the “hydrophilic” state to
the “hydrophobic” state, and a certain probability of switching
from the “hydrophobic” state to the “hydrophilic” state.




Summary

In this practical, you will have learnt to use the following R
functions:


	numeric() for making a vector for storing numbers

	character() for making a vector for storing characters

	matrix() for making a matrix variable

	rownames() for assigning names to the rows of a matrix variable

	colnames() for assigning names to the columns of a matrix
variable

	sample() for making a random sample of numbers from a vector of
numbers



All of these functions belong to the standard installation of R.




Links and Further Reading

Some links are included here for further reading, which will be
especially useful if you need to use the R package for your project
or assignments.

For background reading on multinomial models, Markov models, and
HMMs, it is recommended to read Chapters 1 and 4 of
Introduction to Computational Genomics: a case studies approach
by Cristianini and Hahn (Cambridge University Press;
www.computational-genomics.net/book/ [http://www.computational-genomics.net/book/]).

There is also a very nice chapter on “Markov Models” in the book
Applied statistics for bioinformatics using R by Krijnen
(available online at
cran.r-project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf [http://cran.r-project.org/doc/contrib/Krijnen-IntroBioInfStatistics.pdf]).
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Exercises

Answer the following questions, using the R package. For each
question, please record your answer, and what you typed into R to
get this answer.


	Q1. In a previous practical, you saw that the Bacteriophage lambda genome sequence (NCBI accession NC_001416) has

	long stretches of either very GC-rich (mostly in the first half of the genome) or very AT-rich sequence
(mostly in the second half of the genome). Use a HMM with two different states (“AT-rich” and “GC-rich”) to
infer which state of the HMM is most likely to have generated each nucleotide position in the Bacteriophage
lambda genome sequence. For the AT-rich state, set pA= 0.27, pC= 0.2084,
pG= 0.198, and pT= 0.3236. For the GC-rich state, set pA= 0.2462,
pC= 0.2476, pG= 0.2985, and pT= 0.2077.
Set the probability of switching from the AT-rich state to the GC-rich state to be 0.0002, and the


probability of switching from the GC-rich state to the AT-rich state to be 0.0002.
What is the most probable state path?




	Q2. Given a HMM with four different states (“A-rich”, “C-rich”, “G-rich” and “T-rich”), infer which state of

	the HMM is most likely to have generated each nucleotide position in the Bacteriophage lambda genome sequence.
For the A-rich state, set pA= 0.3236, pC= 0.2084, pG= 0.198, and
pT= 0.27. For the C-rich state, set pA= 0.2462, pC= 0.2985,
pG= 0.2476, and pT= 0.2077. For the G-rich state, set pA= 0.2462,
pC= 0.2476, pG= 0.2985, and pT= 0.2077. For the T-rich state,
set pA= 0.27, pC= 0.2084, pG= 0.198, and pT= 0.3236.
Set the probability of switching from the A-rich state to any of the three other states to be
6.666667e-05. Likewise, set the probability of switching from the C-rich/G-rich/T-rich state to any
of the three other states to be 6.666667e-05.
What is the most probable state path?
Do you find differences between these results and the results from
simply using a two-state HMM (as in Q1)?

	Q3. Make a two-state HMM to model protein sequence evolution, with “hydrophilic” and “hydrophobic” states.

	For the hydrophilic state, set pA= 0.02, pR= 0.068, pN= 0.068,
pD= 0.068, pC= 0.02, pQ= 0.068, pE= 0.068, pG= 0.068,
pH= 0.068, pI= 0.012, pL= 0.012, pK= 0.068, pM= 0.02,
pF= 0.02, pP= 0.068, pS= 0.068, pT= 0.068, pW= 0.068,
pY= 0.068, and pV= 0.012. For the hydrophobic state, set pA= 0.114,
pR= 0.007, pN= 0.007, pD= 0.007, pC= 0.114, pQ= 0.007,
pE= 0.007, pG= 0.025, pH= 0.007, pI= 0.114, pL= 0.114,
pK= 0.007, pM= 0.114, pF= 0.114, pP= 0.025, pS= 0.026,
pT= 0.026, pW= 0.025, pY= 0.026, and pV= 0.114.
Set the probability of switching from the hydrophilic state to the hydrophobic state to be 0.01.
Set the probability of switching from the hydrophobic state to the hydrophilic state to be 0.01.
Now infer which state of the HMM is most likely to have generated each amino acid position in the the
human odorant receptor 5BF1 protein (UniProt accession Q8NHC7).
What is the most probable state path?
The odorant receptor is a 7-transmembrane protein, meaning that it
crosses the cell membrane seven times. As a consequence the protein
has seven hydrophobic regions that cross the fatty cell membrane,
and seven hydrophilic segments that touch the watery cytoplasm and
extracellular environments. What do you think are the coordinates
in the protein of the seven transmembrane regions?









          

      

      

    

  

    
      
          
            
  
Answers to the End-of-chapter Exercises


DNA Sequence Statistics (1)


Q1.

What are the last twenty nucleotides of the DEN-1 Dengue virus genome sequence?

To answer this, you first need to install the “SeqinR” R package, and download
the DEN-1 Dengue genome sequence from the NCBI database and save it as
a file “den1.fasta” in the “My Documents” folder.

Then to find the length of the DEN-1 Dengue virus genome sequence, type in the R console:

> library("seqinr")
> dengue <- read.fasta(file="den1.fasta")
> dengueseq <- dengue[[1]]
> length(dengueseq)
[1] 10735





This tells us that the length of the sequence is 10735 nucleotides.
Therefore, the last 20 nucleotides are from 10716 to 10735. You can
extract the sequence of these nucleotides by typing:

> dengueseq[10716:10735]
[1] "c" "t" "g" "t" "t" "g" "a" "a" "t" "c" "a" "a" "c" "a" "g" "g" "t" "t" "c"
[20] "t"








Q2.

What is the length in nucleotides of the genome sequence for the bacterium Mycobacterium leprae strain TN (accession NC_002677)?

To answer this question, you first need to retrieve the Mycobacterium leprae TN genome
sequence from the NCBI database. You can use this by going to the NCBI website and searching
for it via the NCBI website, or alternatively by using the getncbiseq() function in R.

To get the Mycobacterium leprae TN genome via the NCBI website, it�s necessary to first go to the NCBI website (www.ncbi.nlm.nih.gov) and search for NC_002677 and download it as a fasta format file (eg. “leprae.fasta”) and save it in the “My Documents” folder. You can then read the sequence into
R from the file by typing:

Then in R type:

> leprae <- read.fasta(file="leprae.fasta")
> lepraeseq <- leprae[[1]]





Alternatively, to get the Mycobacterium leprae TN genome using the getncbiseq() function in R,
you first need to copy the getncbiseq() function and paste it into R, and then you can retrieve
the sequence (accession NC_002677) by typing in R:

> lepraeseq <-  getncbiseq("NC_002677")





Now we have the Mycobacterium leprae TN genome sequence stored in the vector lepraseq in R.
We can get the length of the sequence by getting the length of the vector:

> length(lepraeseq)
[1] 3268203








Q3.

How many of each of the four nucleotides A, C, T and G, and any other symbols, are there in the Mycobacterium leprae TN genome sequence?

Type:

> table(lepraeseq)
lepraeseq
     a      c      g      t
687041 938713 950202 692247








Q4.

What is the GC content of the Mycobacterium leprae TN genome sequence, when (i) all non-A/C/T/G nucleotides are included, (ii) non-A/C/T/G nucleotides are discarded?

Find out how the GC function deals with non-A/C/T/G nucleotides, type:

> help("GC")





Type:

> GC(lepraeseq)
[1] 0.5779675
> GC(lepraeseq, exact=FALSE)
[1] 0.5779675





This gives 0.5779675 or 57.79675%. This is the GC content when non-A/C/T/G nucleotides are not taken into account.

The length of the M. leprae sequence is 3268203 bp, and it has 938713 Cs and 950202 Gs, and 687041 As and 692247 Ts. So to calculating the GC content when only considering As, Cs, Ts and Gs, we can also
type:

> (938713+950202)/(938713+950202+687041+692247)
[1] 0.5779675





To take non-A/C/T/G nucleotides into account when calculating GC, type:

> GC(lepraeseq, exact=TRUE)
[1] 0.5779675





We get the same answer as when we ignored non-A/C/G/T nucleotides. This is actually because the M. leprae TN sequence does not have any non-A/C/G/T nucleotides.

However, many other genome sequences do contain non-A/C/G/T nucleotides. Note that under ‘Details’ in the box that appears when you type ‘help(‘GC’)’, it says : “When exact is set to TRUE the G+C content is estimated with ambiguous bases taken into account. Note that this is time expensive. A first pass is made on non-ambiguous bases to estimate the probabilities of the four bases in the sequence. They are then used to weight the contributions of ambiguous bases to the G+C content.”




Q5.

How many of each of the four nucleotides A, C, T and G are there in the complement of the Mycobacterium leprae TN genome sequence?

First you need to search for a function to calculate reverse complement, eg. by typing:

> help.search("complement")





You will find that there is a function seqinr::comp that complements a nucleic acid sequence. This means it is a function in the SeqinR package.

Find out how to use this function by typing:

> help("comp")





The help says “Undefined values are returned as NA”. This means that the complement of non-A/C/T/G symbols will be returned as NA.

To find the number of A, C, T, and G in the reverse complement type:

> complepraeseq <- comp(lepraeseq)
> table(complepraeseq)
 complepraeseq
      a      c      g      t
 692247 950202 938713 687041





Note that in the M. leprae sequence we had 687041 As, in the complement have 687041 Ts.
In the M. leprae sequence we had 938713 Cs, in the complement have 938713 Gs.
In the M. leprae sequence we had 950202 Gs, in the complement have 950202 Cs.
In the M. leprae sequence we had 692247 Ts, in the complement have 692247 As.




Q6.

How many occurrences of the DNA words CC, CG and GC occur in the Mycobacterium leprae TN genome sequence?

> count(lepraeseq, 2)
    aa     ac     ag     at     ca     cc     cg     ct     ga     gc     gg
 149718 206961 170846 159516 224666 236971 306986 170089 203397 293261 243071
    gt     ta     tc     tg     tt
 210473 109259 201520 229299 152169





Get count for CC is 236,971; count for CG is 306,986; count for GC is 293,261.




Q7.

How many occurrences of the DNA words CC, CG and GC occur in the (i) first 1000 and (ii) last 1000 nucleotides of the Mycobacterium leprae TN genome sequence?

Type:

> length(lepraeseq)
[1] 3268203





to find the length of the M. leprae genome sequence.  It is 3,268,203 bp. Therefore the first 1000 nucleotides will have indices 1-1000, and the last thousand nucleotides will have indices 3267204-3268203. We find the count of DNA words of length 2 by typing:

> count(lepraeseq[1:1000],2)
 aa ac ag at ca cc cg ct ga gc gg gt ta tc tg tt
 78 95 51 49 85 82 92 54 68 63 39 43 42 73 31 54
> count(lepraeseq[3267204:3268203],2)
 aa ac ag at ca cc cg ct ga gc gg gt ta tc tg tt
 70 85 44 55 94 81 87 50 53 75 49 51 36 72 48 49





To check that the subsequences that you looked at are 1000 nucleotides long, you can type:

> length(lepraeseq[1:1000])
[1] 1000
> length(lepraeseq[3267204:3268203])
[1] 1000










DNA Sequence Statistics (2)


Q1.

Draw a sliding window plot of GC content in the DEN-1 Dengue virus genome, using a window size of 200 nucleotides. Do you see any regions of unusual DNA content in the genome (eg. a high peak or low trough)?

To do this, you first need to download the DEN-1 Dengue virus sequence from the NCBI database.
To do this follow the steps in the chapter DNA Sequence Statistics (1).

Then read the sequence into R using the SeqinR package:

> library("seqinr")
> dengue <- read.fasta(file = "den1.fasta")
> dengueseq <- dengue[[1]]





Then write a function to make a sliding window plot:

> slidingwindowplot <- function(windowsize, inputseq)
  {
     starts <- seq(1, length(inputseq)-windowsize, by = windowsize)
     n <- length(starts)
     chunkGCs <- numeric(n)
     for (i in 1:n) {
        chunk <- inputseq[starts[i]:(starts[i]+windowsize-1)]
        chunkGC <- GC(chunk)
        chunkGCs[i] <- chunkGC
     }
     plot(starts,chunkGCs,type="b",xlab="Nucleotide start position",ylab="GC content")
  }





Then make a sliding window plot with a window size of 200 nucleotides:

> slidingwindowplot(200, dengueseq)





[image: image0]

The GC content varies from about 45% to about 50% throughout the DEN-1 Dengue virus genome, with
some noticeable troughs at about 2500 bases and at about 4000 bases along the sequence, where the
GC content drops to about 40%. There is no strong difference between the start and end of the
genome, although from around bases 4000-7000 the GC content is quite high (about 50%), and from
about 2500-3500 and 7000-9000 bases the GC content is relatively low (about 43-47%).

We can also make a sliding window plot of GC content using a window size of 2000 nucleotides:

> slidingwindowplot(2000, dengueseq)





[image: image1]

In this picture it is much more noticeable that the GC content is relatively high from around
4000-7000 bases, and lower on either side (from 2500-3500 and 7000-9000 bases).




Q2.

Draw a sliding window plot of GC content in the genome sequence for the bacterium Mycobacterium leprae strain TN (accession NC_002677) using a window size of 20000 nucleotides. Do you see any regions of unusual DNA content in the genome (eg. a high peak or low trough)?

To do this, you first need to download the Mycobacterium leprae sequence from the NCBI
database.
To do this follow the steps in the chapter DNA Sequence Statistics (1).

Then read the sequence into R using the SeqinR package:

> leprae <- read.fasta(file = "leprae.fasta")
> lepraeseq <- leprae[[1]]





Then make a sliding window plot with a window size of 20000 nucleotides:

> slidingwindowplot(20000, lepraeseq)





[image: image2]

We see the highest peak in GC content at about 1 Mb into the M. leprae genome. We also
see troughs in GC content at about 1.1 Mb, and at about 2.6 Mb.

With a window size of 200 nucleotides, the plot is very messy, and we cannot see the peaks and troughs
in GC content so easily:

> slidingwindowplot(200, lepraeseq)





[image: image3]

With a window size of 200,000 nucleotides, the plot is very smooth, and we cannot see the peaks and troughs
in GC content very easily:

> slidingwindowplot(200000, lepraeseq)





[image: image4]




Q3.

Write a function to calculate the AT content of a DNA sequence (ie. the fraction of the nucleotides in the sequence that are As or Ts). What is the AT content of the Mycobacterium leprae TN genome?

Here is a function to calculate the AT content of a genome sequence:

> AT <- function(inputseq)
  {
     mytable <- count(inputseq, 1) # make a table with the count of As, Cs, Ts, and Gs
     mylength <- length(inputseq) # find the length of the whole sequence
     myAs <- mytable[[1]] # number of As in the sequence
     myTs <- mytable[[4]] # number of Ts in the sequence
     myAT <- (myAs + myTs)/mylength
     return(myAT)
  }





We can then use the function to calculate the AT content of the M. leprae genome:

> AT(lepraeseq)
[1] 0.4220325





You should notice that the AT content is (1 minus GC content), ie. (AT content + GC content = 1):

> GC(lepraeseq)
[1] 0.5779675
> 0.4220325 + 0.5779675
[1] 1








Q4.

Write a function to draw a sliding window plot of AT content. Use it to make a sliding window plot of AT content along the Mycobacterium leprae TN genome, using a windowsize of 20000 nucleotides. Do you notice any relationship between the sliding window plot of GC content along the Mycobacterium leprae genome, and the sliding window plot of AT content?

We can write a function to write a sliding window plot of AT content:

> slidingwindowplotAT <- function(windowsize, inputseq)
  {
     starts <- seq(1, length(inputseq)-windowsize, by = windowsize)
     n <- length(starts)
     chunkATs <- numeric(n)
     for (i in 1:n) {
        chunk <- inputseq[starts[i]:(starts[i]+windowsize-1)]
        chunkAT <- AT(chunk)
        chunkATs[i] <- chunkAT
     }
     plot(starts,chunkATs,type="b",xlab="Nucleotide start position",ylab="AT content")
 }





We can then use this function to make a sliding window plot with a window size of 20000 nucleotides:

> slidingwindowplotAT(20000, lepraeseq)





[image: image5]

This is the mirror image of the plot of GC content (because AT equals 1 minus GC):

> slidingwindowplot(20000, lepraeseq)





[image: image6]




Q5.

Is the 3-nucleotide word GAC GC over-represented or under-represented in the Mycobacterium leprae TN genome sequence?

We can get the number of counts of each of the 3-nucleotide words by typing:

> count(lepraeseq, 3)
   aaa   aac   aag   aat   aca   acc   acg   act   aga   agc   agg   agt   ata   atc   atg
 32093 48714 36319 32592 44777 67449 57326 37409 31957 62473 38946 37470 25030 57245 44268
   att   caa   cac   cag   cat   cca   ccc   ccg   cct   cga   cgc   cgg   cgt   cta   ctc
 32973 52381 64102 64345 43838 64869 46037 87560 38504 78120 82057 89358 57451 29004 39954
   ctg   ctt   gaa   gac   gag   gat   gca   gcc   gcg   gct   gga   ggc   ggg   ggt   gta
 64730 36401 43486 61174 40728 58009 66775 80319 83415 62752 44002 81461 47651 69957 33139
   gtc   gtg   gtt   taa   tac   tag   tat   tca   tcc   tcg   tct   tga   tgc   tgg   tgt
 60958 65955 50421 21758 32971 29454 25076 48245 43166 78685 31424 49318 67270 67116 45595
   tta   ttc   ttg   ttt
 22086 43363 54346 32374





There are 61,174 GACs in the sequence.

The total number of 3-nucleotide words is calculated by typing:

> sum(count(lepraeseq,3))
[1] 3268201





Therefore, the observed frequency of GAC is 61174/3268201 = 0.01871794.

To calculate the expected frequency of GAC, first we need to get the number of counts of 1-nucleotide words by typing:

> count(lepraeseq, 1)
    a      c      g      t
 687041 938713 950202 692247





The sequence length is 3268203 bp.
The frequency of G is 950202/3268203 = 0.2907414.
The frequency of A is 687041/3268203 = 0.2102198.
The frequency of C is 938713/3268203 = 0.2872260.
The expected frequency of GAC is therefore 0.2907414*0.2102198*0.2872260 = 0.01755514.

The value of Rho is therefore the observed frequency/expected frequency = 0.01871794/0.01755514 = 1.066237.
That, is there are about 1.1 times as many GACs as expected. This means that GAC is slightly over-represented in this sequence.
The difference from 1 is so little however that it might not be statistically significant.

We can search for a function to calculate rho by typing:

> help.search("rho")
  base::getHook                          Functions to Get and Set Hooks for Load, Attach, Detach and Unload
  seqinr::rho                            Statistical over- and under- representation of dinucleotides in a sequence
  stats::cor.test                        Test for Association/Correlation Between Paired Samples
  survival::pbc                          Mayo Clinic Primary Biliary Cirrhosis Dat





There is a function rho in the SeqinR package. For example, we can use it to calculate Rho for
words of length 3 in the M. leprae genome by typing:

> rho(lepraeseq, wordsize=3)
       aaa       aac       aag       aat       aca       acc       acg       act       aga
  1.0570138 1.1742862 0.8649101 1.0653761 1.0793820 1.1899960 0.9991680 0.8949893 0.7610323
       agc       agg       agt       ata       atc       atg       att       caa       cac
  1.0888781 0.6706048 0.8856096 0.8181874 1.3695545 1.0462815 1.0697245 1.2626819 1.1309452
       cag       cat       cca       ccc       ccg       cct       cga       cgc       cgg
  1.1215062 1.0487995 1.1444773 0.5944657 1.1169725 0.6742135 1.3615987 1.0467726 1.1261261
       cgt       cta       ctc       ctg       ctt       gaa       gac       gag       gat
  0.9938162 0.6939044 0.6996033 1.1197319 0.8643241 1.0355868 1.0662370 0.7012887 1.3710523
       gca       gcc       gcg       gct       gga       ggc       ggg       ggt       gta
  1.1638601 1.0246015 1.0512300 1.0855155 0.7576632 1.0266049 0.5932565 1.1955191 0.7832457
       gtc       gtg       gtt       taa       tac       tag       tat       tca       tcc
  1.0544820 1.1271276 1.1827465 0.7112314 0.7888126 0.6961501 0.8135266 1.1542345 0.7558461
       tcg       tct       tga       tgc       tgg       tgt       tta       ttc       ttg
  1.3611325 0.7461477 1.1656391 1.1636701 1.1469683 1.0695410 0.7165237 1.0296334 1.2748168
       ttt
  1.0423929





The Rho value for GAC is given as 1.0662370, in agreement with our calculation above.






Sequence Databases


Q1.

What information about the rabies virus sequence (NCBI accession NC_001542) can you obtain from its annotations in the NCBI Sequence Database?

To do this, you need to go to the www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov] website
and type the rabies virus genome sequence accession (NC_001542) in the search box, and press ‘Search’.

On the search results page, you should see ‘1’ beside the word ‘Nucleotide’, meaning that there was one hit to a sequence record in the NCBI Nucleotide database, which contains DNA and RNA sequences. If you click on the word ‘Nucleotide’, it will bring you to the sequence record, which should be the NCBI sequence record for the rabies virus’ genome (ie. for accession NC_001542):

[image: image7]

On the webpage (above), you can see the DEFINITION, ORGANISM and REFERENCE fields of the NCBI record:

DEFINITION: Rabies virus, complete genome.

ORGANISM: Rabies virus

REFERENCE: There are several papers (the first is):
AUTHORS: Tordo,N., Poch,O., Ermine,A., Keith,G. and Rougeon,F.

TITLE: Completion of the rabies virus genome sequence determination: highly conserved domains among the L (polymerase) proteins of unsegmented negative-strand RNA viruses

JOURNAL: Virology 165 (2), 565-576 (1988)

There are also some other references, for papers published about the rabies virus genome sequence.

An alternative way of retrieving the annotations for the rabies virus sequence is to use the SeqinR R package.
As the rabies virus is a virus, its genome sequence should be in the “refseqViruses” ACNUC sub-database.
Therefore, we can perform the following query to retrieve the annotations for the rabies virus
genome sequence (accession NC_001542):

> library("seqinr")                                 # load the SeqinR R package
> choosebank("refseqViruses")                       # select the ACNUC sub-database to be searched
> query("rabies", "AC=NC_001542")                   # specify the query
> annots <- getAnnot(rabies$req[[1]])               # retrieve the annotations
> annots[1:20]                                      # print out the first 20 lines of the annotations
  [1] "LOCUS       NC_001542              11932 bp ss-RNA     linear   VRL 08-DEC-2008"
  [2] "DEFINITION  Rabies virus, complete genome."
  [3] "ACCESSION   NC_001542"
  [4] "VERSION     NC_001542.1  GI:9627197"
  [5] "DBLINK      Project: 15144"
  [6] "KEYWORDS    ."
  [7] "SOURCE      Rabies virus"
  [8] "  ORGANISM  Rabies virus"
  [9] "            Viruses; ssRNA negative-strand viruses; Mononegavirales;"
  [10] "            Rhabdoviridae; Lyssavirus."
  [11] "REFERENCE   1  (bases 5388 to 11932)"
  [12] "  AUTHORS   Tordo,N., Poch,O., Ermine,A., Keith,G. and Rougeon,F."
  [13] "  TITLE     Completion of the rabies virus genome sequence determination:"
  [14] "            highly conserved domains among the L (polymerase) proteins of"
  [15] "            unsegmented negative-strand RNA viruses"
  [16] "  JOURNAL   Virology 165 (2), 565-576 (1988)"
  [17] "   PUBMED   3407152"
  [18] "REFERENCE   2  (bases 1 to 5500)"
  [19] "  AUTHORS   Tordo,N., Poch,O., Ermine,A., Keith,G. and Rougeon,F."
  [20] "  TITLE     Walking along the rabies genome: is the large G-L intergenic region"
> closebank()








Q2.

How many nucleotide sequences are there from the bacterium Chlamydia trachomatis in the NCBI Sequence Database?

To answer this, you need to go to www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov]
and select “Nucleotide” from the drop-down list at the top
of the webpage, as you want to search for nucleotide (DNA or RNA) sequences.

Then in the search box, type “Chlamydia trachomatis”[ORGN] and press ‘Search’:

[image: image8]

Here [ORGN] specifies the organism you are interested in, that is, the species name in Latin.

The results page should give you a list of the hits to sequence records in the NCBI Nucleotide database:

[image: image9]

It will say “Found 35577 nucleotide sequences.   Nucleotide (35429)   GSS (148)”.
This means that 35,577 sequences were found, of which 35429 are DNA or RNA sequences, and
148 are DNA sequences from the Genome Sequence Surveys (GSS), that is, from
genome sequencing projects [as of 15-Jun-2011]. Note that there are new sequences
being added to the database continuously, so if you check this again in a couple of months, you will
probably find a higher number of sequences (eg. 36,000 sequences).

Note: if you just go to the www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov] database,
and search for “Chlamydia trachomatis”[ORGN]
(without choosing “Nucleotide” from the drop-down list), you will see 35429 hits to the Nucleotide
database and 148 to the GSS (Genome Sequence Survey) database:

[image: image10]

Note also that if you search for “Chlamydia trachomatis”, without using [ORGN] to specify the organism,
you will get 56032 hits to the Nucleotide database and 149 to the GSS database, but some of these might
not be Chlamydia trachomatis sequences - some could be sequences from other species for which the NCBI sequence
record contains the phrase “Chlamydia trachomatis” somewhere.

An alternative way to search for nucleotide sequences from the bacterium Chlamydia trachomatis is to
use the SeqinR package. We want to find nucleotide sequences, so the correct ACNUC sub-database to search
is the “genbank” sub-database. Thus, we can carry out our search by typing:

> library("seqinr")                                 # load the SeqinR R package
> choosebank("genbank")                             # select the ACNUC sub-database to be searched
> query("Ctrachomatis", "SP=Chlamydia trachomatis") # specify the query
> Ctrachomatis$nelem                                # print out the number of matching sequences
  [1] 35471
> closebank()





We find 35,471 nucleotide sequences from Chlamydia trachomatis. We do not get exactly the same number
of sequences as we got when we searched via the NCBI website (35,577 sequences), but the numbers are very close.
The likely reasons for the differences could be that the ACNUC “genbank” sub-database excludes some sequences from
whole genome sequencing projects from the NCBI Nucleotide database, and in addition, the ACNUC databases
are updated very regularly, but may be missing a few sequences that were added to the NCBI database
in the last day or two.




Q3.

How many nucleotide sequences are there from the bacterium Chlamydia trachomatis in the RefSeq part of the NCBI Sequence Database?

To answer this, you need to go to www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov]
and select “Nucleotide” from the drop-down list
at the top of the webpage, as you want to search for nucleotide sequences.

Then in the search box, type “Chlamydia trachomatis”[ORGN] AND srcdb_refseq[PROP] and press ‘Search’:

[image: image11]

Here [ORGN] specifies the organism, and [PROP] specifies a property of the sequences (in this case that
they belong to the RefSeq subsection of the NCBI database).

At the top of the results page, it should say “Results: 1 to 20 of 29 sequences”, so there were
29 matching sequences [as of 15-Jun-2011].
As for Q2, if you try this again in a couple of months, the number will probably be higher, due to extra
sequences added to the database.

Note that the sequences in Q2 are all Chlamydia trachomatis DNA and RNA sequences in the NCBI database.
The sequences in Q3 gives the Chlamydia trachomatis DNA and RNA sequences in the RefSeq part of the NCBI
database, which is a subsection of the database for high-quality manually-curated data.

The number of sequences in RefSeq is much fewer than the total number of C. trachomatis sequences,
partly because low quality sequences are never added to RefSeq, but also because RefSeq curators have
probably not had time to add all high-quality sequences to RefSeq (this is a time-consuming process,
as the curators add additional information to the NCBI Sequence records in RefSeq, such as references to
papers that discuss a particular sequence).

An alternative way to search for nucleotide sequences from the bacterium Chlamydia trachomatis in RefSeq
use the SeqinR package. We want to find RefSeq sequences, so the correct ACNUC sub-database to search
is the “refseq” sub-database. Thus, we can carry out our search by typing:

> library("seqinr")                                  # load the SeqinR R package
> choosebank("refseq")                               # select the ACNUC sub-database to be searched
> query("Ctrachomatis2", "SP=Chlamydia trachomatis") # specify the query
> Ctrachomatis2$nelem                                # print out the number of matching sequences
  [1] 1
> closebank()





We find 1 RefSeq sequence from Chlamydia trachomatis. We do not get exactly the same number
of sequences as we got when we searched via the NCBI website (29 sequences). This is because the
29 sequences found via the NCBI website include whole genome sequences, but the whole genome sequences
from bacteria are stored in the ACNUC “bacterial” sub-database, and so are not in the ACNUC “refseq”
sub-database.




Q4.

How many nucleotide sequences were submitted to NCBI by Matthew Berriman?

To answer this, you need to go to www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov],
and select “Nucleotide” from the drop-down list,
as you want to search for nucleotide sequences.

Then in the search box, type “Berriman M”[AU] and press ‘Search’.

Here [AU] specifies the name of the person who either submitted the sequence to the NCBI database,
or wrote a paper describing the sequence.

The results page should look like this:
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On the top of the results page, it says [as of 15-Jun-2011]: “Found 487270 nucleotide sequences.   Nucleotide (277546)   EST (121075)   GSS (88649)”. This means that 487270 DNA/RNA sequences were either submitted to the NCBI database by someone called M. Berriman, or were described in a paper by someone called M. Berriman. Of these, 277546 were DNA/RNA sequences, 121075 were EST sequences (part of mRNAs), and 88649 were DNA sequences from genome sequencing projects (GSS or Genome Sequence Survey sequences).

Note that unfortunately the NCBI website does not allow us to search for “Berriman Matthew”[AU] so we
cannot be sure that all of these sequences were submitted by Matthew Berriman.

Note also that the search above will find sequences that were either submitted to the NCBI database
by M. Berriman, or described in a paper on which M. Berriman was an author. Therefore, not all of the
sequences found were necessarily submitted by M. Berriman.

An alternative way to search for nucleotide sequences submitted by M. Berriman is to use the SeqinR
package. We want to find nucleotide sequences, so the appropriate ACNUC sub-database to search is
“genbank”. Therefore, we type:

> library("seqinr")                  # load the SeqinR R package
> choosebank("genbank")              # select the ACNUC sub-database to be searched
> query("mberriman", "AU=Berriman")  # specify the query
> mberriman$nelem                    # print out the number of matching sequences
 [1] 169701
> closebank()





We find 169,701 matching sequences. This is less than the number found by searching via the NCBI
website (487,270 sequences). The difference is probably due to the fact that the “genbank” ACNUC
sub-database excludes some sequences from the NCBI Nucleotide database (eg. short sequences from
genome sequencing projects).

Note that the “AU=Berriman” query will find sequences submitted or published by someone called Berriman.
We are not able to specify the initial of the first name of this person using the “query()” command, so
we cannot specify that the person is called “M. Berriman”.




Q5.

How many nucleotide sequences from the nematode worms are there in the RefSeq Database?

To answer this, you need to go to www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov]
and select “Nucleotide” from the drop-down list, as you want to search for nucleotide sequences.

Then in the search box, type Nematoda[ORGN] AND srcdb_refseq[PROP] and press ‘Search’.

Here [ORGN] specifies the group of species that you want to search for sequences from.
In Q3, [ORGN] was used to specify the name of one organism (Chlamydia trachomatis).
However, you can also use [ORGN] to specify the name of a group of
organisms, for example, Fungi[ORGN] would search for fungal sequences or Mammalia[ORGN]
would search for mammalian sequences. The name of the group of species that you want to
search for must be given in Latin, so to search for sequences
from nematode worms we use the Latin name Nematoda.

The search page should say at the top ‘Results: 1 to 20 of 145355’ [as of 15-Jun-2011].
This means that 145,355 DNA or RNA sequences were found from nematode worm species in the RefSeq database.
These sequences are probably from a wide range of nematode worm species, including the model nematode worm
Caenorhabditis elegans, as well as parasitic nematode species.

An alternative way to search for RefSeq nucleotide sequences from nematode worms is to use the SeqinR package.
We want to find nucleotide sequences that are in RefSeq, so the appropriate ACNUC sub-database to search is
“refseq”. Therefore, we type:

> library("seqinr")                  # load the SeqinR R package
> choosebank("refseq")               # select the ACNUC sub-database to be searched
> query("nematodes", "SP=Nematoda")  # specify the query
> nematodes$nelem                    # print out the number of matching sequences
 [1] 55241
> closebank()





That is, using SeqinR, we find 55,241 DNA or RNA sequences from nematode worms in the RefSeq database.
This is less than the number of sequences found by searching via the NCBI website (145,355 sequences).
This is because the “refseq” ACNUC sub-database does not contain all of the sequences in the NCBI
RefSeq database, for various reasons, for example, some of the sequences in the NCBI RefSeq database
(eg. whole genome sequences) are in other ACNUC sub-databases.




Q6.

How many nucleotide sequences for collagen genes from nematode worms are there in the NCBI Database?

To answer this, you need to go to www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov]
and select “Nucleotide” from the drop-down list, as you want to search for nucleotide sequences.

Then in the search box, type Nematoda[ORGN] AND collagen.

Here [ORGN] specifies that we want sequences from nematode worms. The phrase “AND collagen” means that the word collagen
must appear somewhere in the NCBI entries for those sequences, for example, in the sequence name, or in a description
of the sequence, or in the title of a paper describing the sequence, etc.

On the results page, you should see ‘Found 8437 nucleotide sequences.   Nucleotide (1642)   EST (6795)’ [as of 15-Jun-2011].
This means that 8437 DNA or RNA sequences for collagen genes from nematode worms were found, of which 6795 are EST sequences
(parts of mRNAs). Note that these 8437 nucleotide sequences may not all necessarily be for collagen genes, as some of the
NCBI records found may be for other genes but contain the word “collagen” somewhere in the NCBI record (for example, in
the title of a cited paper). However, a good number of them are probably collagen sequences from nematodes.

An alternative way to search for collagen nucleotide sequences from nematode worms is to use the SeqinR package.
We want to find nucleotide sequences, so the appropriate ACNUC sub-database to search is “genbank”.
To search for collagen genes, we can specify “collagen” as a keyword by using “K=collagen” in our query.
Therefore, we type:

> library("seqinr")                                # load the SeqinR R package
> choosebank("genbank")                            # select the ACNUC sub-database to be searched
> query("collagen", "SP=Nematoda AND K=collagen")  # specify the query
> collagen$nelem                                   # print out the number of matching sequences
 [1] 60
> closebank()





That is, using SeqinR, we find 60 DNA or RNA sequences with the keyword “collagen” from nematode worms.
This is less than the number of sequences found by searching via the NCBI website (8437 sequences).
This is probably partly because the ACNUC “genbank” sub-database excludes some sequences that are in the NCBI
Nucleotide database (eg. short sequences from genome sequencing projects), but also partly because
the method used to assign keywords to sequences in ACNUC is quite conservative and relatively few
sequences seem to be assigned the keyword “collagen”. However, presumably most of the sequences tagged
with the keyword “collagen” are collagen genes (while the search via the NCBI website may have picked
up many non-collagen genes, as explained above).




Q7.

How many mRNA sequences for collagen genes from nematode worms are there in the NCBI Database?

To answer this, you need to go to www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov],
and select “Nucleotide” from the drop-down sequences, as you want to search for nucleotide sequences
(nucleotide sequences include DNA sequences and RNA sequences, such as mRNAs).

Then in the search box, type Nematoda[ORGN] AND collagen AND “biomol mRNA”[PROP].

Here [ORGN] specifies the name of the group of species, collagen specifies that we want to find NCBI entries
that include the word collagen, and [PROP] specifies a property of those sequences (that they are mRNAs, in this case).

The search page should say ‘Found 7751 nucleotide sequences.   Nucleotide (956)   EST (6795)’ [as of 15-Jun-2011].
This means that 7751 mRNA sequences from nematodes were found that contain the word ‘collagen’ in the NCBI record. Of the
7751, 6795 are EST sequences (parts of mRNAs).

Note that in Q6 we found 8437 nucleotide (DNA or RNA) sequences from nematode worms. In this question, we found out that
only 7751 of those sequences are mRNA sequences. This means that the other (8437-7751=) 686 sequences must be DNA sequences,
or other types of RNA sequences (not mRNAs) such as tRNAs or rRNAs.

An alternative way to search for collagen mRNA sequences from nematode worms is to use the SeqinR package.
mRNA sequences are nucleotide sequences, so the appropriate ACNUC sub-database to search is “genbank”.
To search for mRNAs, we can specify “M=mRNA” in our query. Therefore, we type:

> library("seqinr")                                            # load the SeqinR R package
> choosebank("genbank")                                        # select the ACNUC sub-database to be searched
> query("collagen2", "SP=Nematoda AND K=collagen AND M=mRNA")  # specify the query
> collagen2$nelem                                              # print out the number of matching sequences
 [1] 14
> closebank()





We find 14 nematode mRNA sequences labelled with the keyword “collagen”. Again, we find less sequences than found
when searching via the NCBI website (7751 sequences), but as in Q6, the search using the keyword “collagen” in the
SeqinR package may be more likely to pick up true collagen sequences (rather than other sequences that just happen
to contain the word “collagen” somewhere in their NCBI entries).




Q8.

How many protein sequences for collagen proteins from nematode worms are there in the NCBI database?

To answer this, you need to go to www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov],
and select “Protein” from the drop-down list, as you want to search for protein sequences.

Then type in the search box: Nematoda[ORGN] AND collagen and press ‘Search’:
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On the results page, you should see ‘1 to 20 of 1982’. This means that 1982 protein sequences from nematode
worms were found that include the word collagen in the NCBI sequence entries [as of 15-Jun-2011].

As far as I know, there is not an ACNUC sub-database that contains all the protein sequences from the
NCBI Protein database, and therefore it is not currently possible to carry out the same query using SeqinR.




Q9.

What is the accession number for the Trypanosoma cruzi genome in NCBI?

There are two ways that you can answer this.

The first method is to go to www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov]
and select “Genome” from the drop-down list, as you want to search for genome sequences.

Then type in the search box: “Trypanosoma cruzi”[ORGN] and press ‘Search’:
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This will search the NCBI Genome database, which contains fully sequenced genome sequences.

The results page says ‘All:1’, and lists just one NCBI record, the genome sequence for Trypanosoma cruzi
strain CL Brener, which has accession NZ_AAHK00000000:

[image: image15]

The second method of answering the question is to go directly to the NCBI Genomes webpage [http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome].

Click on the ‘Eukaryota’ link at the middle the page, as Trypanosoma cruzi is a eukaryotic species.

This will give you a complete list of all the eukaryotic genomes that have been fully sequenced.

Go to the ‘Edit’ menu of your web browser, and choose ‘Find’, and search for ‘Trypanosoma cruzi’:

[image: image16]

You should find Trypanosoma cruzi strain CL Brener.
You will also find that there are several ongoing genome sequencing projects listed for other strains of
Trypanosoma cruzi: strains JR cl. 4, Sylvio X10/1, Y, and Esmeraldo Esmeraldo cl. 3.

If you look 7th column of the table, you will see that it says “Assembly” for strains CL Brener and Sylvio X10/1,
meaning that genome assemblies are available for these two strains. Presumably the other strains are still being
sequenced, and genome assemblies are not yet available.

The link ‘GB’ (in green) at the far right of the webpage gives a link to the NCBI record for the sequence.
In this case, the link for Trypanosoma cruzi strain CL Brener leads us to the NCBI record for accession
AAHK01000000. This is actually an accession for the T. cruzi strain CL Brener sequencing project, rather than
for the genome sequence itself. On the top right of the page, you will see a link “Genome”, and if you click
on it, it will bring you to the NCBI accession NZ_AAHK00000000, the genome sequence for Trypanosoma cruzi strain CL Brener.

Of the other T. cruzi strains listed, there is only a ‘GB’ link for one other strain, Sylvio X10/1.
If you click on the link for Trypanosoma cruzi strain Sylvio X10/1, it will bring you to the
NCBI record for accession ADWP01000000, the accession for the T. cruzi strain Sylvio X10/1 sequencing
project.

Note that the answer is slightly different for the answer from the first method above, which
did not find the information on the genome projects for strains JR cl. 4, Sylvio X10/1, Y, and Esmeraldo Esmeraldo cl. 3,
because the sequencing projects for these species are still ongoing.




Q10.

How many fully sequenced nematode worm species are represented in the NCBI Genome database?

To answer this question, you need to go to the NCBI Genome webpage [http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome].

In the search box at the top of the page, type Nematoda[ORGN] to search for genome sequences from nematode
worms, using the Latin name for the nematode worms.

On the results page, you will see ‘Items 1 - 20 of 63’, indicating that 63 genome sequences from nematode worms
have been found. If you look down the page, you will see however that many of these are mitochondrial genome
sequences, rather than chromosomal genome sequences.

If you are just interested in chromosomal genome sequences, you can type ‘Nematoda[ORGN] NOT mitochondrion’ in the
search box, to search for non-mitochondrial sequences. This should give you 16 sequences, which are all chromosomal
genome sequences for nematode worms, including the species Caenorhabditis elegans, Caenorhabditis remanei,
Caenorhabditis briggsae, Loa loa (which causes subcutaneous filariasis), and Brugia malayi
(which causes lymphatic filariasis [http://www.who.int/lymphatic_filariasis/en/]).

Thus, there are nematode genome sequences from five different
species that have been fully sequenced (as of 15-Jun-2011). Because nematode worms are multi-chromosomal species,
there may be several chromosomal sequences for each species.

Note that when you search the NCBI Genome database [http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome], you will
find the NCBI records for completely sequenced genomes (completely sequenced nematode genomes in this case).

If you are interested in partially sequenced genomes, that is sequences from genome sequencing projects that are
still in progress, you can go to the NCBI Genome Projects website [http://www.ncbi.nlm.nih.gov/genomeprj]. If you
search the NCBI Genome Projects database for Nematoda[ORGN], you will find that genome
sequencing projects for many other nematode species are ongoing, including for the species Onchocerca volvulus
(which causes onchocerciasis [http://www.who.int/topics/onchocerciasis/en/]),
Wuchereria bancrofti (which causes lymphatic filariasis [http://www.who.int/lymphatic_filariasis/en/]), and
Necator americanus (which causes soil-transmitted helminthiasis [http://www.who.int/intestinal_worms/en/]).






Sequence Alignment


Q1.

Download FASTA-format files of the Brugia malayi Vab-3 protein (UniProt accession A8PZ80) and the Loa loa Vab-3 protein (UniProt accession E1FTG0) sequences from UniProt.

We can use SeqinR to retrieve these sequences by typing:

> library("seqinr")                           # load the SeqinR package
> choosebank("swissprot")                     # select the ACNUC sub-database to be searched
> query("brugia", "AC=A8PZ80")                # search for the Brugia sequence
> brugiaseq <- getSequence(brugia$req[[1]])   # get the Brugia sequence
> query("loa", "AC=E1FTG0")                   # search for the Loa sequence
> loaseq <- getSequence(loa$req[[1]])         # get the Loa sequence
> closebank()                                 # close the connection to the ACNUC sub-database








Q2.

What is the alignment score for the optimal global alignment between the Brugia malayi Vab-3 protein and the Loa loa Vab-3 protein, when you use the BLOSUM50 scoring matrix, a gap opening penalty of -10 and a gap extension penalty of -0.5?

We can use the Biostrings R package to answer this, by typing:

> library("Biostrings")                       # load the Biostrings package
> data(BLOSUM50)                              # load the BLOSUM50 scoring matrix
> brugiaseqstring <- c2s(brugiaseq)           # convert the Brugia sequence to a string
> loaseqstring <- c2s(loaseq)                 # convert the Loa sequence to a string
> brugiaseqstring <- toupper(brugiaseqstring) # convert the Brugia sequence to uppercase
> loaseqstring <- toupper(loaseqstring)       # convert the Loa sequence to a string
> myglobalAlign <- pairwiseAlignment(brugiaseqstring, loaseqstring, substitutionMatrix = "BLOSUM50",
  gapOpening = -9.5, gapExtension = -0.5, scoreOnly = FALSE) # align the two sequences
> myglobalAlign
  Global PairwiseAlignedFixedSubject (1 of 1)
  pattern: [1] MK--LIVDSGHTGVNQLGGVFVNGRPLPDSTRQKI...IESYKREQPSIFAWEIRDKLLHEKVCSPDTIPSA
  subject: [1] SSSNLFADSGHTGVNQLGGVFVNGRPLPDSTRQKI...IESYKREQPSIFAWEIRDKLLHEKVCSPDTIPSV
  score: 777.5





The alignment score is 777.5.




Q3.

Use the printPairwiseAlignment() function to view the optimal global alignment between Brugia malayi Vab-3 protein and the Loa loa Vab-3 protein, using the BLOSUM50 scoring matrix, a gap opening penalty of -10 and a gap extension penalty of -0.5.

To do this, first you must copy and paste the printPairwiseAlignment() function into R.

Then you can use it to view the alignment that you obtained in Q2:

> printPairwiseAlignment(myglobalAlign)
  [1] "MK--LIVDSGHTGVNQLGGVFVNGRPLPDSTRQKIVDLAHQGARPCDISRILQVSNGCVS 58"
  [1] "SSSNLFADSGHTGVNQLGGVFVNGRPLPDSTRQKIVDLAHQGARPCDISRILQVSNGCVS 60"
  [1] " "
  [1] "KILCRYYESGTIRPRAIGGSKPRVATVSVCDKIESYKREQPSIFAWEIRDKLLHEKVCSP 118"
  [1] "KILCRYYESGTIRPRAIGGSKPRVATVSVCDKIESYKREQPSIFAWEIRDKLLHEKVCSP 120"
  [1] " "
  [1] "DTIPSA 178"
  [1] "DTIPSV 180"
  [1] " "





The two proteins are very similar over their whole lengths, with few gaps and mostly identities (few mismatches).




Q4.

What global alignment score do you get for the two Vab-3 proteins, when you use the BLOSUM62 alignment matrix, a gap opening penalty of -10 and a gap extension penalty of -0.5?

Again, we can use the Biostrings R package to answer this, by typing:

> data(BLOSUM62)                              # load the BLOSUM62 scoring matrix
> myglobalAlign2 <- pairwiseAlignment(brugiaseqstring, loaseqstring, substitutionMatrix = "BLOSUM62",
  gapOpening = -9.5, gapExtension = -0.5, scoreOnly = FALSE) # align the two sequences
> myglobalAlign2
  Global PairwiseAlignedFixedSubject (1 of 1)
  pattern: [1] MK--LIVDSGHTGVNQLGGVFVNGRPLPDSTRQKI...IESYKREQPSIFAWEIRDKLLHEKVCSPDTIPSA
  subject: [1] SSSNLFADSGHTGVNQLGGVFVNGRPLPDSTRQKI...IESYKREQPSIFAWEIRDKLLHEKVCSPDTIPSV
  score: 593.5





The alignment score when BLOSUM62 is used is 593.5, while the score when BLOSUM50 is used is 777.5 (from Q2).

We can print out the alignment and see if the alignment made using BLOSUM62 is different from that
when BLOSUM50 is used:

> printPairwiseAlignment(myglobalAlign2)
  [1] "MK--LIVDSGHTGVNQLGGVFVNGRPLPDSTRQKIVDLAHQGARPCDISRILQVSNGCVS 58"
  [1] "SSSNLFADSGHTGVNQLGGVFVNGRPLPDSTRQKIVDLAHQGARPCDISRILQVSNGCVS 60"
  [1] " "
  [1] "KILCRYYESGTIRPRAIGGSKPRVATVSVCDKIESYKREQPSIFAWEIRDKLLHEKVCSP 118"
  [1] "KILCRYYESGTIRPRAIGGSKPRVATVSVCDKIESYKREQPSIFAWEIRDKLLHEKVCSP 120"
  [1] " "
  [1] "DTIPSA 178"
  [1] "DTIPSV 180"
  [1] " "





The alignment made using BLOSUM62 is actually the same as that made using BLOSUM50, so it doesn’t
matter which scoring matrix we use in this case.




Q5.

What is the statistical significance of the optimal global alignment for the Brugia malayi and Loa loa Vab-3 proteins made using the BLOSUM50 scoring matrix, with a gap opening penalty of -10 and a gap extension penalty of -0.5?

To answer this, we can first make 1000 random sequences using a multinomial model in which the probabilities
of the 20 amino acids are set equal to their frequencies in the Brugia malayi Vab-3 protein.

First you need to first copy and paste the generateSeqsWithMultinomialModel() function into R,
and then you can use it as follows:

> randomseqs <- generateSeqsWithMultinomialModel(brugiaseqstring,1000)





This makes a vector randomseqs, containing 1000 random sequences, each of
the same length as the Brugia malayi Vab-3 protein.

We can then align each of the 1000 random sequences to the Loa loa Vab-3 protein, and store
the scores for each of the 1000 alignments in a vector randomscores:

> randomscores <- double(1000) # Create a numeric vector with 1000 elements
> for (i in 1:1000)
  {
     score <- pairwiseAlignment(loaseqstring, randomseqs[i], substitutionMatrix = "BLOSUM50",
       gapOpening = -9.5, gapExtension = -0.5, scoreOnly = TRUE)
     randomscores[i] <- score
  }





The score for aligning the Brugia malayi and Loa loa Vab-3 proteins using BLOSUM50 with a
gap opening penalty of -10 and gap extension penalty of -0.5 was 777.5 (from Q2).

We can see what fraction of the 1000 alignments between the random sequences (of the same
composition as Brugia malayi Vab-3) and Loa loa Vab-3 had scores equal to or higher than 777.5:

> sum(randomscores >= 777.5)
[1] 0





We see that none of the 1000 alignments had scores equal to or higher than 777.5.

Thus, the p-value for the alignment of Brugia malayi and Loa loa Vab-3 proteins is 0, and
we can therefore conclude that the alignment score is statistically significant (as it is less than 0.05).
Therefore, it is very likely that the Brugia malayi Vab-3 and Loa loa Vab-3 proteins are
homologous (related).




Q6.

What is the optimal global alignment score between the Brugia malayi Vab-6 protein and the Mycobacterium leprae chorismate lyase protein?

To calculate the optimal global alignment score, we must first retrieve the M. leprae
chorismate lyase sequence:

> choosebank("swissprot")
> query("leprae", "AC=Q9CD83")
> lepraeseq <- getSequence(leprae$req[[1]])
> closebank()
> lepraeseqstring <- c2s(lepraeseq)
> lepraeseqstring <- toupper(lepraeseqstring)





We can then align the Brugia malayi Vab-3 protein sequence to the M. leprae chorismate
lyase sequence:

> myglobalAlign3 <- pairwiseAlignment(brugiaseqstring, lepraeseqstring, substitutionMatrix = "BLOSUM50",
  gapOpening = -9.5, gapExtension = -0.5, scoreOnly = FALSE) # align the two sequences
> myglobalAlign3
  Global PairwiseAlignedFixedSubject (1 of 1)
  pattern: [1] M-----------------KLIVDSGHTGVNQLGGV...------INYAKQNNNLL----DRFILP---FSKL
  subject: [1] MTNRTLSREEIRKLDRDLRILVATNGT-LTRVLNV...DTPREELDRCQYSNDIDTRSGDRFVLHGRVFKNL
  score: 67.5





The alignment score is 67.5.

We can print out the alignment as follows:

> printPairwiseAlignment(myglobalAlign3)
  [1] "M-----------------KLIVDSGHTGVNQLGGVFVNGRPLPDSTRQKIVDLAHQGARP 43"
  [1] "MTNRTLSREEIRKLDRDLRILVATNGT-LTRVLNVVANEEIVVDIINQQLLDVA-----P 54"
  [1] " "
  [1] "-------CDISRILQ---VSNGCVSKILCRYYESGTI---RPRAIGG-----SKPRVATV 85"
  [1] "KIPELENLKIGRILQRDILLKGQKSGILFVAAESLIVIDLLPTAITTYLTKTHHP-IGEI 113"
  [1] " "
  [1] "SVCDKIESYKREQ-------PSIFA----WEIRDKLLHEKVCSPDTIPSAVV-------- 126"
  [1] "MAASRIETYKEDAQVWIGDLPCWLADYGYWDL---------------PKRAVGRRYRIIA 158"
  [1] " "
  [1] "--EAIIV-----------------INYAKQNNNLL----DRFILP---FSKL 160"
  [1] "GGQPVIITTEYFLRSVFQDTPREELDRCQYSNDIDTRSGDRFVLHGRVFKNL 218"
  [1] " "





The alignment does not look very good, it contains many gaps and mismatches and few matches.

In Q5, we made a vector randomseqs that contains 1000 random sequences generated using a multinomial
model in which the probabilities of the 20 amino acids are set equal to their frequencies in
the Brugia malayi Vab-3 protein.

To calculate a statistical significance for the alignment between Brugia malayi Vab-3 and
M. leprae chorismate lyase, we can calculate the alignment scores for the 1000 random sequences
to M. leprae chorismate lyase:

> randomscores <- double(1000) # Create a numeric vector with 1000 elements
> for (i in 1:1000)
  {
     score <- pairwiseAlignment(lepraeseqstring, randomseqs[i], substitutionMatrix = "BLOSUM50",
       gapOpening = -9.5, gapExtension = -0.5, scoreOnly = TRUE)
     randomscores[i] <- score
  }





We can then see how many of the 1000 alignment score exceed the actual alignment score for
B. malayi Vab-3 and M. leprae chorismate lyase (67.5):

> sum(randomscores >= 67.5)
[1] 22





We see that 22 of the 1000 scores for the 1000 random sequences to M. leprae chorismate lyase
are higher than the actual alignment score of 67.5. Therefore the P-value for the alignment score
is 22/1000 = 0.022. This is just under 0.05, and so is quite near to the general cutoff for statistical
significance (0.05). However, in fact it is close enough to 0.05 that we should have some doubt
about whether the alignment is statistically significant.

In fact, the B. malayi Vab-3 and M. leprae chorismate lyase proteins are not known to be
homologous (related), and so it is likely that the relatively high alignment score (67.5) is
just due to chance alone.






Multiple Alignment and Phylogenetic Trees


Q1.

Calculate the genetic distances between the following NS1 proteins from different Dengue virus strains: Dengue virus 1 NS1 protein (Uniprot Q9YRR4), Dengue virus 2 NS1 protein (UniProt Q9YP96), Dengue virus 3 NS1 protein (UniProt B0LSS3), and Dengue virus 4 NS1 protein (UniProt Q6TFL5). Which are the most closely related proteins, and which are the least closely related, based on the genetic distances?

To retrieve the sequences of the four proteins, we can use the retrieveseqs() function in R, to retrieve
the sequences from the “swissprot” ACNUC sub-database:

> library("seqinr")                                      # Load the SeqinR package
> seqnames <- c("Q9YRR4", "Q9YP96", "B0LSS3", "Q6TFL5")  # Make a vector containing the names of the sequences
> seqs <- retrieveseqs(seqnames,"swissprot")             # Retrieve the sequences and store them in list variable "seqs"





We then can write out the sequences to a FASTA-format file called “NS1.fasta”, by typing:

> write.fasta(seqs, seqnames, file="NS1.fasta")





We can then use the CLUSTAL software to make a multiple alignment of the protein sequences
in NS1.fasta, and store it in a PHYLIP-format alignment file called “NS1.phy”,
as described in the chapter.

The next step is to read the PHYLIP-format alignment into R, and calculate the genetic distances
between the protein sequences, by typing:

> NS1aln  <- read.alignment(file = "NS1.phy", format = "phylip")
> NS1dist <- dist.alignment(NS1aln)
> NS1dist
                Q9YRR4     Q9YP96     B0LSS3
  Q9YP96      0.2544567
  B0LSS3      0.2302831  0.2268713
  Q6TFL5      0.3058189  0.3328595  0.2970443





We see that the two sequences with the greatest genetic distance are Q6TFL5 (Dengue virus 4 NS1) and Q9YP96 (Dengue virus 2 NS1), which
have a genetic distance of about 0.33. The two sequences with the smallest genetic distance are
Q9YRR4 (Dengue virus 1 NS1) and B0LSS3 (Dengue virus 3 NS1), which have a genetic distance of about 0.23.




Q2.

Build an unrooted phylogenetic tree of the NS1 proteins from Dengue virus 1, Dengue virus 2, Dengue virus 3 and Dengue virus 4,
using the neighbour-joining algorithm. Which are the most closely related proteins, based on the tree? Based on the bootstrap values in the tree, how confident are you of this?

We can build an unrooted phylogenetic tree of the NS1 proteins using the neighbour-joining algorithm by typing:

> NS1alntree <- unrootedNJtree(NS1aln,type="protein")





[image: image17]

We see in the tree that Q6TFL5 (Dengue virus 4 NS1) and Q9YRR4 (Dengue virus 1 NS1) are grouped together, with
a bootstrap value of 100%, which is a high bootstrap value, so we are reasonably confident of this grouping.

The other two proteins, B0LSS3 (Dengue virus 3 NS1) and Q9YP96 (Dengue virus 2 NS1) are grouped together, but
the bootstrap value for the node representing the ancestor of this clade is just 19%.

One thing that is surprising is that Q6TFL5 and Q9YRR4 were not the two closest proteins when we calculated
the genetic distance (in Q1), and we should bear this in mind, as it should make us a little bit cautious in
trusting this phylogenetic tree.




Q3.

Build an unrooted phylogenetic tree of the NS1 proteins from Dengue viruses 1-4, based on a filtered alignment of the four proteins (keeping alignment columns in which at least 30% of letters are not gaps, and in which at least 30% of pairs of letters are identical). Does this differ from the tree based on the unfiltered alignment (in Q2)? Can you explain why?

To filter the alignment of the NS1 proteins, we can use the “cleanAlignment()” function:

> cleanedNS1aln <- cleanAlignment(NS1aln, 30, 30)





We can then build an unrooted tree based on the filtered alignment:

> cleanedNS1alntree <- unrootedNJtree(cleanedNS1aln,type="protein")
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We find that B0LSS3 (Dengue virus 3 NS1) and Q9YRR4 (Dengue virus 1 NS1) are grouped together with bootstrap of 100%.
This disagrees with what we found in the phylogenetic tree based on the unfiltered alignment (in Q2), in which
B0LSS3 was grouped with Q9YP96. However, it agrees with what we found when we calculated the genetic distance matrix
(in Q1), which suggested that B0LSS3 is most closely related to Q9YRR4.

Why do the filtered and unfiltered alignments disagree? To find out, it is a good idea to print out both
alignments:

> printMultipleAlignment(NS1aln)
  [1] "------------------------------------------------------------ 0"
  [1] "DSGCVVSWKNKELKCGSGIFITDNVHTWTEQYKFQPESPSKLASAIQKAQEEGICGIRSV 60"
  [1] "------------------------------------------------------------ 0"
  [1] "DMGCVVSWNGKELKCGSGIFVIDNVHTRTEQYKFQPESPARLASAILNAHKDGVCGVRST 60"
  [1] " "
  [1] "------------------------------------------------------------ 0"
  [1] "TRLENLMWKQITPELNHILSENEVKLTIMTGDIKGIMQAGKRSLRPQPTELKYSWKAWGK 120"
  [1] "------------------------------------------------------------ 0"
  [1] "TRLENVMWKQITNELNYVLWEGGHDLTVVAGDVKGVLTEGKRALTPPVNDLKYSWKTWGK 120"
  [1] " "
  [1] "------------------------------------------------------------ 0"
  [1] "AKMLSTESHNQTFLIDGPETAECPNTNRAWNSLEVEDYGFGVFTTNIWLKLKEKQDAFCD 180"
  [1] "------------------------------------------------------------ 0"
  [1] "AKIFTLEARNSTFLIDGPDTSECPNERRAWNFLEVEDYGFGMFTTNIWMKFREGSSEVCD 180"
  [1] " "
  [1] "----------------DMGYWIESEKNETWKLARASFIEVKTCIWPKSHTLWSNGVWESE 44"
  [1] "SKLMSAAIKDNRAVHADMGYWIESALNDTWKIEKASFIEVKNCHWPKSHTLWSNGVLESE 240"
  [1] "------------ASHADMGYWIESQKNGSWKLEKASLIEVKTCTWPKSHTLWSNGVLESD 48"
  [1] "HRLMSAAIKDQKAVHADMGYWIESSKNQTWQIEKASLIEVKTCLWPKTHTLWSNGVLESQ 240"
  [1] " "
  [1] "MIIPKIYGGPISQHNYRPGYFTQTAGPWHLGKLELDFDLCEGTTVVVDEHCGNRGPSLRT 104"
  [1] "MIIPKNFAGPVSQHNYRPGYHTQIAGPWHLGKLEMDFDFCDGTTVVVTEDCGNRGPSLRT 300"
  [1] "MIIPKSLAGPISQHNYRPGYHTQTAGPWHLGKLELDFNYCEGTTVVITENCGTRGPSLRT 108"
  [1] "MLIPRSYAGPFSQHNYRQGYATQTMGPWHLGKLEINFGECPGTTVAIQEDCGHRGPSLRT 300"
  [1] " "
  [1] "TTVTGKIIHEWCCRFCTLPPLRFRGEDGCWYGMEI----------------- 147"
  [1] "TTASGKLITEWCCRSCTLPPLRYRGEDGCWYGMEIRPLKEKEENLVNSLVTA 360"
  [1] "TTVSGKLIHEWCCRSCTLPPLRYMGEDG------------------------ 144"
  [1] "TTASGKLVTQWCCRSCAMPPLRFLGEDGCWYGMEIRPLSEKEENMVKSQVTA 360"
  [1] " "





We can see that the unfiltered (original) alignment (above) contains a lot of columns with gaps in them.
This could possibly be adding noise to the phylogenetic analysis.

Let’s print out the filtered alignment now:

> printMultipleAlignment(cleanedNS1aln)
  [1] "------------------------------------------------------------ 0"
  [1] "DGCVVSWKELKCGSGIFDNVHTTEQYKFQPESPLASAIAGCGRSTRLENMWKQITELNLE 60"
  [1] "------------------------------------------------------------ 0"
  [1] "DGCVVSWKELKCGSGIFDNVHTTEQYKFQPESPLASAIAGCGRSTRLENMWKQITELNLE 60"
  [1] " "
  [1] "------------------------------------------------------------ 0"
  [1] "LTGDKGGKRLPLKYSWKWGKAKENTFLIDGPTECPNRAWNLEVEDYGFGFTTNIWKECDL 120"
  [1] "------------------------------------------------------------ 0"
  [1] "LTGDKGGKRLPLKYSWKWGKAKENTFLIDGPTECPNRAWNLEVEDYGFGFTTNIWKECDL 120"
  [1] " "
  [1] "-----------DMGYWIESKNTWKLARASFIEVKTCWPKSHTLWSNGVWESMIIPKGGPS 49"
  [1] "MSAAIKDAVHADMGYWIESLNTWKIEKASFIEVKNCWPKSHTLWSNGVLESMIIPKAGPS 180"
  [1] "-------ASHADMGYWIESKNSWKLEKASLIEVKTCWPKSHTLWSNGVLESMIIPKAGPS 53"
  [1] "MSAAIKDAVHADMGYWIESKNTWQIEKASLIEVKTCWPKTHTLWSNGVLESMLIPRAGPS 180"
  [1] " "
  [1] "QHNYRPGYTQTAGPWHLGKLEDFCGTTVVVECGRGPSLRTTTVTGKIIHEWCCRFCTLPP 109"
  [1] "QHNYRPGYTQIAGPWHLGKLEDFCGTTVVVECGRGPSLRTTTASGKLITEWCCRSCTLPP 240"
  [1] "QHNYRPGYTQTAGPWHLGKLEDFCGTTVVIECGRGPSLRTTTVSGKLIHEWCCRSCTLPP 113"
  [1] "QHNYRQGYTQTMGPWHLGKLENFCGTTVAIECGRGPSLRTTTASGKLVTQWCCRSCAMPP 240"
  [1] " "
  [1] "LRFGEDGCWYGMEI------------- 156"
  [1] "LRYGEDGCWYGMEIRPLEKEENVSVTA 300"
  [1] "LRYGEDG-------------------- 153"
  [1] "LRFGEDGCWYGMEIRPLEKEENVSVTA 300"
  [1] " "





The unfiltered alignment contains far fewer “gappy” columns (columns where two
or more sequences have gaps) compared to the original unfiltered alignment. It is
likely that the gappy columns in the original unfiltered alignment were adding noise
to the phylogenetic analysis, and that the phylogenetic tree based on the filtered
alignment is more reliable in this case.

Q4.
Build a rooted phylogenetic tree of the Dengue NS1 proteins based on a filtered alignment, using the Zika virus protein as the outgroup. Which are the most closely related Dengue virus proteins, based on the tree? What extra information does this tree tell you, compared to the unrooted tree in Q2?

First we need to obtain the Zika virus protein (UniProt accession Q32ZE1):

> seqnames <- c("Q9YRR4", "Q9YP96", "B0LSS3", "Q6TFL5", "Q32ZE1")  # Make a vector containing the names of the sequences
> seqs <- retrieveseqs(seqnames,"swissprot")                       # Retrieve the sequences and store them in list variable "seqs"





We then write out the sequences to a FASTA-format file called “NS1b.fasta”:

> write.fasta(seqs, seqnames, file="NS1b.fasta")





We then use CLUSTAL to make a PHYLIP-format alignment, and save it as “NS1b.phy”.

We then read the alignment into R:

> NS1baln  <- read.alignment(file = "NS1b.phy", format = "phylip")





We then discard unreliable columns from the alignment:

> cleanedNS1baln <- cleanAlignment(NS1baln, 30, 30)





We then can build a rooted phylogenetic tree using the Zika virus protein (accession Q32ZE1) as the outgroup, by
using the rootedNJtree() function:

> cleanedNS1balntree <- rootedNJtree(cleanedNS1baln, "Q32ZE1",type="protein")
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We see in this tree that Q9YP96 (Dengue virus 2 NS1) and Q6TFL5 (Dengue virus 4 NS1) are grouped
together with bootstrap 47%. The next closest sequence is B0LSS3 (Dengue virus 3 NS1). The Q9YRR4
sequence (Dengue virus 1 NS1) diverged earliest of the four Dengue virus NS1 proteins, as it is grouped with the outgroup.

Note that in Q3, we found that B0LSS3 (Dengue virus 3 NS1) and Q9YRR4 (Dengue virus 1 NS1) were grouped together in
an unrooted tree. The current rooted tree is consistent with this; it has B0LSS3 and Q9YRR4 as the two earliest diverging
Dengue NS1 proteins, as they are nearest to the outgroup in the tree.

Thus, the rooted tree tells you which of the Dengue virus NS1 proteins branched off the earliest from the ancestors of the
other proteins, and which branched off next, and so on... We were not able to tell this from the unrooted tree.






Computational Gene-finding


Q1.

How many ORFs are there on the forward strand of the DEN-1 Dengue virus genome (NCBI accession NC_001477)?

To answer this, we can use the findORFsinSeq() function to find ORFs on the forward strand of the
DEN-1 Dengue virus sequence. This function requires a string of characters as its input, so we first
use “c2s()” to convert the Dengue virus sequence to a string of characters:

> dengueseqstring <- c2s(dengueseq)           # Convert the Dengue sequence to a string of characters
> mylist <- findORFsinSeq(dengueseqstring)    # Find ORFs in "dengueseqstring"
> orflengths <- mylist[[3]]                   # Find the lengths of ORFs in "dengueseqstring"
> length(orflengths)                          # Find the number of ORFs that were found
  [1] 116





We find that there are 116 ORFs on the forward strand of the DEN-1 Dengue virus genome.




Q2.

What are the coordinates of the rightmost (most 3’, or last) ORF in the forward strand of the DEN-1 Dengue virus genome?

To answer this, we need to get the coordinates of the ORFs in the DEN-1 Dengue virus genome, as follows:

> dengueseqstring <- c2s(dengueseq)           # Convert the Dengue sequence to a string of characters
> mylist <- findORFsinSeq(dengueseqstring)    # Find ORFs in "dengueseqstring"
> starts <- mylist[[1]]                       # Start positions of ORFs
> stops <- mylist[[2]]                        # Stop positions of ORFs





The vector starts contains the start coordinates of the predicted start codons, and the vector
stops contains the end coordinates of the predicted stop codons. We know there are 116 ORFs
on the forward strand (from Q1), and we want the coordinates of the 116th ORF. Thus, we type:

> starts[116]
  [1] 10705
> stops[116]
  [1] 10722





This tells us that the most 3’ ORF has a predicted start codon from 10705-10707 and a
predicted stop codon from 10720-10722. Thus, the coordinates of the 3’-most ORF are 10705-10722.




Q3.

What is the predicted protein sequence for the rightmost (most 3’, or last) ORF in the forward strand of the DEN-1 Dengue virus genome?

To get the predicted protein sequence of the 5’-most ORF (from 10705-10722), we type:

> myorfvector <- dengueseq[10705:10722] # Get the DNA sequence of the ORF
> seqinr::translate(myorfvector)
  [1] "M" "E" "W" "C" "C" "*"





The sequence of the ORF is “MEWCC”.




Q4.

How many ORFs are there of 30 nucleotides or longer in the forward strand of the DEN-1 Dengue virus genome sequence?

The findORFsinSeq() function returns a list variable, the third element of which is a vector containing
the lengths of the ORFs found. Thus we can type:

> dengueseqstring <- c2s(dengueseq)           # Convert the Dengue sequence to a string of characters
> mylist <- findORFsinSeq(dengueseqstring)    # Find ORFs in "dengueseqstring"
> orflengths <- mylist[[3]]                   # Find the lengths of ORFs in "dengueseqstring"
> summary(orflengths >= 30)
      Mode   FALSE    TRUE    NA's
  logical      54      62       0





This tells us that 62 ORFs on the forward strand of the DEN-1 Dengue virus are 30 nucleotides or longer.




Q5.

How many ORFs longer than 248 nucleotides are there in the forward strand of the DEN-1 Dengue genome sequence?

To answer this, we type:

> summary(orflengths >= 248)
      Mode   FALSE    TRUE    NA's
  logical     114       2       0





This tells us that there are 2 ORFs of 248 nucleotides or longer on the forward strand.




Q6.

If an ORF is 248 nucleotides long, what length in amino acids will its predicted protein sequence be?

If we include the predicted stop codon in the length of the ORF, it means that the last three
bases of the ORF are not coding for any amino acid. Therefore, the length of the ORF that is
coding for amino acids is 245 bp. Each amino acid is coded for by 3 bp, so there can be
245/3 = 81 amino acids. Thus, the predicted protein sequence will be 81 amino acids long.




Q7.

How many ORFs are there on the forward strand of the rabies virus genome (NCBI accession NC_001542)?

We first retrieve the rabies virus sequence by copying and pasting the “getncbiseq()” function into R,
and then typing:

> rabiesseq <- getncbiseq("NC_001542")





We then find the ORFs in the forward strand by typing:

> rabiesseqstring <- c2s(rabiesseq)           # Convert the rabies sequence to a string of characters
> rabieslist <- findORFsinSeq(rabiesseqstring)# Find ORFs in "rabiesseqstring"
> rabiesorflengths <- rabieslist[[3]]         # Find the lengths of ORFs in "rabiesseqstring"
> length(rabiesorflengths)                    # Find the number of ORFs that were found
  [1] 111





There were 111 ORFs on the forward strand.




Q8.

What is the length of the longest ORF among the 99% of longest ORFs in 10 random sequences of the same lengths and composition as the rabies virus genome sequence?

We generate 10 random sequences using a multinomial model in which the probabilities of the 4 bases are set equal to their frequencies in the rabies sequence:

> randseqs <- generateSeqsWithMultinomialModel(rabiesseqstring, 10) # Generate 10 random sequences using the multinomial model
> randseqorflengths <- numeric()              # Tell R that we want to make a new vector of numbers
> for (i in 1:10)
  {
    print(i)
    randseq <- randseqs[i]                    # Get the ith random sequence
    mylist <- findORFsinSeq(randseq)          # Find ORFs in "randseq"
    lengths <- mylist[[3]]                    # Find the lengths of ORFs in "randseq"
    randseqorflengths <- append(randseqorflengths, lengths, after=length(randseqorflengths))
  }





To find the length of the longest ORF among the 99% of the longest ORFs in the 10 random sequences, we
find the 99th quantile of randomseqorflengths:

> quantile(randseqorflengths, probs=c(0.99))
  99%
  259.83





That is, the longest of the longest 99% of ORFs in the random sequences is 260 nucleotides.




Q9.

How many ORFs are there in the rabies virus genome that are longer than the threshold length that you found in Q8?

To answer this, we type:

> summary(rabiesorflengths > 260)
      Mode   FALSE    TRUE    NA's
  logical     105       6       0





There are 6 ORFs in the rabies virus genome that are longer than the threshold length found in Q8 (260
nucleotides).






Comparative Genomics


Q1.

How many Mycobacterium ulcerans genes are there in the current version of the Ensembl Bacteria database?




Q2.

How many of the Mycobacterium ulcerans Ensembl genes are protein-coding genes?




Q3.

How many Mycobacterium ulcerans protein-coding genes have Mycobacterium leprae orthologues?




Q4.

How many of theMycobacterium ulcerans protein-coding genes have one-to-one orthologues in Mycobacterium leprae?




Q5.

How many Mycobacterium ulcerans genes have Pfam domains?




Q6.

What are the top 5 most common Pfam domains in Mycobacterium ulcerans genes?




Q7.

How many copies of each of the top 5 domains found in Q6 are there in the Mycobacterium ulcerans protein set?




Q8.

How many of copies are there in the Mycobacterium lepraae protein set, of each of the top 5 Mycobacterium ulcerans Pfam protein domains?




Q9.

Are the numbers of copies of some domains different in the two species?




Q10.

Of the differences found in Q9, are any of the differencess statistically significant?






Contact

I will be grateful if you will send me (Avril Coghlan [http://www.sanger.ac.uk/research/projects/parasitegenomics/]) corrections or suggestions for improvements to
my email address alc@sanger.ac.uk
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The content in this book is licensed under a Creative Commons Attribution 3.0 License [http://creativecommons.org/licenses/by/3.0/].







          

      

      

    

  

    
      
          
            
  
Answers to Revision Exercises


Revision Exercises 1


Q1.

What is the length of (total number of base-pairs in) the Schistosoma mansoni mitochondrial genome
(NCBI accession NC_002545), and how many As, Cs, Gs and Ts does it contain?

To do this, you need to go to the www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov] website
and type the S. mansoni mitochondrial genome (accession NC_002545) in the search box, and press ‘Search’.

On the search results page, you should see ‘1’ beside the word ‘Nucleotide’, meaning that there was one hit to a sequence record in the NCBI Nucleotide database, which contains DNA and RNA sequences. If you click on the word ‘Nucleotide’, it will bring you to the sequence record, which should be the NCBI sequence record for the S.mansoni mitochondrial genome (ie. for accession NC_002545).

To save the sequence as FASTA-format file, click on ‘Send’ at the top right of the page, and choose ‘File’,
then select ‘FASTA’ from the drop-down list labelled ‘Format’, then click ‘Create File’. Save the file
with a name that you will remember (eg. “smansoni.fasta”) in your “My Documents” folder.

You can then read the sequence into R by typing:

> library("seqinr")                                 # load the SeqinR R package
> smansoni <- read.fasta(file="smansoni.fasta")     # read in the sequence file
> smansoniseq <- smansoni[[1]]                      # get the sequence
> length(smansoniseq)                               # get the length of the sequence
  [1] 14415
> table(smansoniseq)                                # get the number of As, Cs, Gs, Ts
  smansoniseq
    a    c    g    t
  3654 1228 3307 6226





Thus, the mitochondrial genome is 14415 bases long, and consists of 3654 As, 1228 Cs, 3307 Gs and 6226 Ts.

Note that, as far as I know, it is not possible to retrieve the sequence for accession NC_002545 directly using
the “query()” function in SeqinR, because the S. mansoni mitochondrial genome sequence does not seem to be
stored in any of the ACNUC sub-databases.




Q2.

What is the length of the Brugia malayi mitochondrial genome (NCBI accession NC_004298),
and how many As, Cs, Gs and Ts does it contain?

To do this, you need to go to the www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov] website
and type the B. malayi mitochondrial genome (accession NC_004298) in the search box, and press ‘Search’.

As in Q1, go to the NCBI record for the sequence, and save the sequence in a FASTA format file, for example,
called “bmalayi.fasta”.

Then read the sequence into R, and get its length and composition by typing:

> bmalayi <- read.fasta(file="bmalayi.fasta")       # read in the sequence file
> bmalayiseq <- bmalayi[[1]]                        # get the sequence
> length(bmalayiseq)                                # get the length of the sequence
  [1] 13657
> table(bmalayiseq)                                 # get the number of As, Cs, Gs, Ts
  bmalayiseq
   a    c    g    t
  2950 1054 2297 7356





The sequence is 13657 bases long, and consists of 2950 As, 1054 Cs, 2297 Gs and 7356 Ts.

Note that, as far as I know, it is not possible to retrieve the sequence for accession NC_004298 directly using
the “query()” function in SeqinR, because the B. malayi mitochondrial genome sequence does not seem to be
stored in any of the ACNUC sub-databases.




Q3.

What is the probability of the Brugia malayi mitochondrial genome sequence (NCBI accession NC_004298),
according to a multinomial model in which the probabilities of As, Cs, Gs and Ts (pA, pC, pG, and pT)
are set equal to the fraction of As, Cs, Gs and Ts in the Schistosoma mansoni mitochondrial genome?

First we can calculate the frequencies of A, C, G and T in the S. mansoni mitochondrial sequence. We
can do this by making a table of the counts of As, Cs, Gs and Ts, and dividing the counts of the bases
by the total sequence length to get frequencies:

> mytable <- table(smansoniseq)
> mytable
    a    c    g    t
  3654 1228 3307 6226
> mytable <- mytable/length(smansoniseq) # Divide the counts by the sequence length, to get frequencies
> mytable
     a          c          g          t
  0.25348595 0.08518904 0.22941381 0.43191120
> freqA <- mytable[["a"]]                # Get the frequency of As
> freqC <- mytable[["c"]]                # Get the frequency of Cs
> freqG <- mytable[["g"]]                # Get the frequency of Gs
> freqT <- mytable[["t"]]                # Get the frequency of Ts
> probabilities <- c(freqA,freqC,freqG,freqT) # Make a vector containing the frequencies of As,Cs,Gs,Ts
> probabilities
  [1] 0.25348595 0.08518904 0.22941381 0.43191120





First we need to make a function to calculate the probability of a sequence, given
a particular multinomial model (with a certain pA, pC, pG, pT). To do this, we can
write the following R function “multinomialprob()”:

> multinomialprob <- function(mysequence, probabilities)
  {
      nucleotides   <- c("A", "C", "G", "T") # Define the alphabet of nucleotides
      names(probabilities) <- nucleotides
      mysequence    <- toupper(mysequence)# Convert the sequence to uppercase letters
      seqlength     <- length(mysequence) # Get the length of the input sequence
      seqprob       <- numeric()          # Make a variable to hold to probability of the whole sequence
      for (i in 1:seqlength)              # For each letter in the input sequence
      {
         nucleotide <- mysequence[i]      # Find the ith nucleotide in the sequence
         # Calculate the probability of the ith nucleotide in the sequence
         nucleotideprob <- probabilities[nucleotide]
         # The probability of the whole sequence is calculated by multiplying together
         # the probabilities of the nucleotides at each sequence position
         if (i == 1) { seqprob <- nucleotideprob[[1]]           }
         else        { seqprob <- seqprob * nucleotideprob[[1]] }
      }
      # Return the value of the probability of the whole sequence
      return(seqprob)
  }





The function multinomialprob() takes as its arguments (inputs) a vector that
contains the DNA sequence, and a vector containing the probabilities pA, pC, pG, and pT.

You will need to copy and paste this function into R to use it. You can then use it to calculate the
probability of the B. malayi mitochondrial sequence, using a multinomial model where pA, pC, pG, pT
are set equal to the fraction of As, Cs, Gs, and Ts in the S. mansoni mitohondrial sequence (which we
have already stored in the vector probabilities, see above):

> multinomialprob(bmalayiseq, probabilities)
  0





In this case, the probability is so small that it is effectively zero.




Q4.

What are the top three most frequent 4-bp words (4-mers) in the genome of the
bacterium Chlamydia trachomatis strain D/UW-3/CX (NCBI accession NC_000117), and
how many times do they occur in its sequence?

To do this, you need to go to the www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov] website
and type the C. trachomatis D/UW-3/CX genome (accession NC_000117) in the search box, and press ‘Search’.

As in Q1, go to the NCBI record for the sequence, and save the sequence in a FASTA format file, for example,
called “ctrachomatis.fasta”.

Alternatively, you can retrieve the sequence using the SeqinR package. The sequence is a fully
sequenced bacterial genome, so is in the ACNUC sub-database called “bacterial”. Thus, we type in R:

> choosebank("bacterial")                                # select the ACNUC sub-database to search
> query("ctrachomatis", "AC=NC_000117")                  # specify the query
> ctrachomatisseq <- getSequence(ctrachomatis$req[[1]])  # get the sequence
> closebank()                                            # close the connection to the ACNUC sub-database





We can now find the most frequent 4-bp words in the sequence by using the “count()” function from SeqinR:

> mytable <- count(ctrachomatisseq, 4)                   # get the count for each 4-bp word
> sort(mytable)                                          # sort the 4-bp words, by the number of occurrences of each word
  ccgg  cggg  ggcc  cccg  cgcg  cggc  gccg  cgcc  ggcg  cggt  gccc  cacg  gggc
  1180  1198  1206  1215  1287  1321  1334  1407  1435  1481  1512  1520  1537
  cgtg  accg  ggtc  gacc  cgac  gtcg  gcgg  ccgc  acgg  gacg  cgtc  ccgt  gtac
  1541  1545  1558  1567  1606  1647  1658  1678  1716  1750  1786  1802  1802
  ...
  agag  agct  ctct  tatt  cttc  tttg  caaa  gaag  ttta  taaa  attt  aaat  tttc
  6836  6860  6937  6946  7234  7280  7289  7353  7671  7731  8100  8144  8462
  gaaa  aaag  cttt  tctt  aaga  ttct  agaa  tttt  aaaa
  8563  9099  9199 10060 10069 10492 10581 14021 14122





The three most frequent 4-bp words are “aaaa” (14122 occurrences), “tttt” (14021 occurrences) and “agaa” (10581 occurrences).




Q5.

Write an R function to generate a random DNA sequence that is n letters long (that is,
n bases long) using a multinomial model in which the probabilities pA, pC, pG,
and pT are set equal to the fraction of As, Cs, Gs and Ts in the Schistosoma mansoni
mitochondrial genome.

In Q3 above, we stored the frequencies of A, C, G and T in the S. mansoni mitochondrial genome
in a vector called probabiltiies:

> probabilities
  [1] 0.25348595 0.08518904 0.22941381 0.43191120





The R function “generateSeqWithMultinomialModel()” below is an R function for generating a
random sequence with a multinomial model, where the probabilities of the different letters are
set equal to the fraction of As, Cs, Gs, and Ts in the S. mansoni mitochondrial genome (ie.
with vector probabilities as its input):

> generateSeqWithMultinomialModel <- function(n, probabilities)
  {
     # Define the letters in the alphabet
     letters <- c("A", "C", "G", "T")
     # Make a random sequence of length n letters, using the multinomial model with probabilities "probabilities"
     seq <- sample(letters, n, rep=TRUE, prob=probabilities) # Sample with replacement
     # Return the sequence
     return(seq)
  }





To use this function to generate a 10-bp random sequence, using vector probabilities as input, we would type:

> generateSeqWithMultinomialModel(10, probabilities)
  [1] "T" "A" "T" "G" "T" "G" "G" "A" "G" "G"





Each time we call the function, it will create a slightly different 10-bp sequence:

> generateSeqWithMultinomialModel(10, probabilities)
  [1] "A" "G" "T" "A" "G" "G" "T" "T" "T" "T"
> generateSeqWithMultinomialModel(10, probabilities)
  [1] "C" "G" "A" "T" "A" "T" "G" "T" "T" "A"








Q6.

Give an example of using your function from Q5 to calculate a random sequence that is 20 letters
long, using a multinomial model with pA =0.28, pC =0.21, pG =0.22, and pT =0.29.

First we need to define a vector myprobabilities containing the probabilities of A, C, G, and T:

> myprobabilities <- c(0.28, 0.21, 0.22, 0.29)





Then we can use the function “generateSeqWithMultinomialModel()” to calculate a 20-bp random
sequence, using the vector myprobabilities as its input:

> generateSeqWithMultinomialModel(20, myprobabilities)
  [1] "C" "C" "G" "A" "T" "A" "T" "C" "C" "G" "C" "C" "T" "G" "A" "G" "T" "T" "T"
  [20] "C"








Q7.

How many protein sequences from rabies virus are there in the NCBI Protein database?

To do this, you need to go to the www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov] website
and select ‘Protein’ from the drop-down box above the search box.

Then type “rabies virus”[ORGN] in the search box, and press ‘Search’.

On the results page, it should say “Results: 1 to 20 of 11768”, meaning that there are 11768 protein sequences from rabies virus in
the database [as of 16-Jun-2011]. Note that if you carry out this search at a later date, you may find more sequences, as the database
is growing all the time.




Q8.

What is the NCBI accession for the Mokola virus genome?

To do this, you need to go to the www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov] website
and select ‘Genome’ from the drop-down box above the search box.

Then type “Mokola virus”[ORGN] in the search box, and press ‘Search’.

You should get a hit to accession NC_006429, the Mokola virus genome sequence.

Note that alternatively you can go to the www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov] website, and
type “Mokola virus”[ORGN] in the search box, and press ‘Search’. On the results page, you will see lots of hits
to the Nucleotide and Protein databases, and 1 hit to the Genome database. If you click on the 1 hit beside
“Genome”, it will bring you to accession NC_006429, the Mokola virus genome sequence.






Revision Exercises 2


Q1.

Use the dotPlot() function in the SeqinR R package to make a dotplot of the rabies virus phosphoprotein and Mokkola virus phosphoprotein, using a windowsize of 10 and threshold of 5.

First we need to retrieve the rabies virus phosphoprotein (UniProt P06747) and Mokola virus phosphoprotein (UniProt P0C569) sequences from UniProt, which we can do using SeqinR:

> library("seqinr")                                      # load the SeqinR package
> choosebank("swissprot")                                # select the ACNUC sub-database to search
> query("rabies", "AC=P06747")                           # specify the query
> rabiesseq <- getSequence(rabies$req[[1]])              # get the sequence
> query("mokola", "AC=P0C569")                           # specify the query
> mokolaseq <- getSequence(mokola$req[[1]])              # get the sequence
> closebank()                                            # close the connection to the ACNUC sub-database





If you look at the help page of the dotPlot function (by typing “help(dotPlot)”), you will see that the
windowsize can be specified using the “wsize” argument and the threshold can be specified using the “nmatch”
argument.

We can therefore use dotPlot() to make a dotplot of the two proteins, using a windowsize of 10 and a
threshold of 5, by typing:

> dotPlot(mokolaseq,rabiesseq,wsize=10,nmatch=5)





[image: image7]

You can see that there is a region of similarity that covers about 60-70 amino acids at the start of the two proteins, then there is a region of similarity from about 210-280 in each of the two proteins. There is also a weak amount of similarity in a region from about 85-100 in the two proteins.




Q2.

Use the function makeDotPlot1 to make a dotplot of the rabies virus phosphoprotein and the Mokola virus phosphoprotein, setting the argument “dotsize” to 0.1.

To use the function makeDotPlot1(), we first need to copy and paste it into R.

We can then use it to make a dotplot, setting “dotsize” to 0.1, by typing:

> makeDotPlot1(mokolaseq,rabiesseq,dotsize=0.1)





[image: image8]

As in Q1, you can see that there is a region of similarity that covers about 60-70 amino acids at the start of the two proteins, then there is a region of similarity from about 210-280 in each of the two proteins.

There are a lot of off-diagonal dots in this picture, because a dot is plotted at every position where the two sequences are identical in one letter (while in Q1, we only plotted a dot at the start of a 10-letter window, where 5 or more out of 10 positions in the window were identical).

The fact that there are so many dots in the picture makes it hard to see the weak region of similarity seen in Q1, from about 85-100 in the two proteins.




Q3.

Adapt the R code in Q2 to write a function that makes a dotplot using a window of size x letters, where a dot is plotted in the first  cell of the window if y or more letters compared in that window are identical in the two sequences.

Here is an R function that will do this:

> makeDotPlot3 <- function(seq1,seq2,windowsize,threshold,dotsize=1)
  {
     length1 <- length(seq1)
     length2 <- length(seq2)
     # make a plot:
     x <- 1
     y <- 1
     plot(x,y,ylim=c(1,length2),xlim=c(1,length1),col="white")
     for (i in 1:(length1-windowsize+1))
     {
        word1 <- seq1[i:(i+windowsize)]
        word1b <- c2s(word1)
        for (j in 1:(length2-windowsize+1))
        {
           word2 <- seq2[j:(j+windowsize)]
           word2b <- c2s(word2)
           # count how many identities there are:
           identities <- 0
           for (k in 1:windowsize)
           {
              letter1 <- seq1[(i+k-1)]
              letter2 <- seq2[(j+k-1)]
              if (letter1 == letter2)
              {
                 identities <- identities + 1
              }
           }
           if (identities >= threshold)
           {
              # add a point to the plot at the position
              for (k in 1:1)
              {
                 points(x=(i+k-1),(y=j+k-1),cex=dotsize,col="blue",pch=7)
              }
           }
        }
     }
     print(paste("FINISHED NOW"))
  }








Q4.

Use the dotPlot() function in the SeqinR R package to make a dotplot of rabies virus phosphoprotein and Mokola virus phosphoprotein, using a window size of 3 and a threshold of 3. Use your own R function from Q3 to make a dotplot of rabies virus phosphoprotein and Mokola virus phosphoprotein, using a windowsize (x) of 3 and a threshold (y) of 3. Are the two plots similar or different, and can you explain why?

We can use the dotPlot() function from SeqinR to make a dotplot of the rabies and Mokola virus
phosphoproteins, using a window size of 3 and a threshold of 3, by typing:

> dotPlot(mokolaseq,rabiesseq,wsize=3,nmatch=3)





[image: image9]

We can also use our function makeDotPlot3 to make a dotplot of the rabies and Mokola virus
proteins, using a window size of 3 and a threshold of 3:

> makeDotPlot3(mokolaseq,rabiesseq,windowsize=3,threshold=3,dotsize=0.1)





[image: image10]

The two pictures are the same, as they should be, as both are plotting a dot in the first position of a 3-letter window if all 3 letters in that window are identical in the two sequences.




Q5.

Write an R function to calculate an unrooted phylogenetic tree with bootstraps, using the minimum evolution method.

We can adjust the function unrootedNJtree, which uses the neighbour-joining method, as it calls the function “nj()” to build a tree.

You can search for R functions that build a tree using minimum evolution method by typing:

> help.search("evolution")
  ape::fastme                Tree Estimation Based on the Minimum Evolution
                             Algorithm





We find that there is a function “fastme()” in the Ape package to build a
tree using the minimum evolution method.

You can view the help page for this function
by typing ‘help(“fastme”)’. If you do this, you will see that it can be run by
typing fastme.bal() or fastme.ols(), which are two different versions of the minimum
evolution function.

Thus, we can adapt the unrootedNJtree to make a function that builds a tree using
minimum evolution, by using “fastme.bal()” instead of “nj()”:

> unrootedMEtree <- function(alignment,type)
  {
     # load the ape and seqinR packages:
     require("ape")
     require("seqinr")
     # define a function for making a tree:
     makemytree <- function(alignmentmat)
     {
        alignment <- ape::as.alignment(alignmentmat)
        if      (type == "protein")
        {
           mydist <- dist.alignment(alignment)
        }
        else if (type == "DNA")
        {
           alignmentbin <- as.DNAbin(alignment)
           mydist <- dist.dna(alignmentbin)
        }
        mytree <- fastme.bal(mydist)
        mytree <- makeLabel(mytree, space="") # get rid of spaces in tip names.
        return(mytree)
     }
     # infer a tree
     mymat  <- as.matrix.alignment(alignment)
     mytree <- makemytree(mymat)
     # bootstrap the tree
     myboot <- boot.phylo(mytree, mymat, makemytree)
     # plot the tree:
     plot.phylo(mytree,type="u")   # plot the unrooted phylogenetic tree
     nodelabels(myboot,cex=0.7)    # plot the bootstrap values
     mytree$node.label <- myboot   # make the bootstrap values be the node labels
     return(mytree)
  }










Contact

I will be grateful if you will send me (Avril Coghlan [http://www.sanger.ac.uk/research/projects/parasitegenomics/]) corrections or suggestions for improvements to
my email address alc@sanger.ac.uk




License

The content in this book is licensed under a Creative Commons Attribution 3.0 License [http://creativecommons.org/licenses/by/3.0/].







          

      

      

    

  

    
      
          
            
  
Protein-Protein Interaction Graphs


More about R

In previous practicals you have have used the R statistics software
for analysing many different types of data. In this practical, you
will use R for analysing protein-protein interaction data. However,
first we will discuss some features of R that will be useful in
this practical.

One thing that is useful to know about R is that many R packages
come with example data sets, which can be used to familiarise
yourself with the functions in the particular package. To list the
data sets that come with a particular package, you can use the
data() function in R. For example, to find the data sets that come
with the “graph” package, type:

> library("graph")
> data(package="graph")
Data sets in package 'graph':

IMCAAttrs (integrinMediatedCellAdhesion)
                               KEGG Integrin Mediated Cell Adhesion graph
IMCAGraph (integrinMediatedCellAdhesion)
                               KEGG Integrin Mediated Cell Adhesion graph
MAPKsig                        A graph encoding parts of the MAPK signaling pathway
MAPKsig (defunctGraph)         A graph encoding parts of the MAPK signaling pathway
apopGraph                      KEGG apoptosis pathway graph
biocRepos                      A graph representing the Bioconductor package repository
graphExamples                  A List Of Example Graphs
pancrCaIni                     A graph encoding parts of the pancreatic cancer initiation





You can then load any of these data sets into R by typing, for
example, to load the apopGraph data set:

> data("apopGraph")





In this practical, you will also be using the table() function to
make tables of data stored in vectors. If you have a vector
containing numeric values, the table() function is useful for
making a table saying how many elements in the vector have each of
the values. For example:

> y <- c(10, 10, 20, 20, 20, 20, 20, 30) # Make a numeric vector "y"
> table(y)
y
10 20 30
 2  5  1





The results from the table() function tell us that two of the
elements in vector y have values of 10, five elements have values
of 20, and one element has a value of thirty.

Another use of the table() function is to tell us how many elements
in a vector of numbers have a particular numeric value. For
example, if we want to know how many elements in vector y have a
value of 20, we can type:

> table(y == 20)
FALSE  TRUE
    3     5





This tells us that five elements of vector y have values of 20.

In this practical you will be using functions from several
different packages. It’s important to remember that sometimes
functions in different packages have the same name. For example,
there is a function called degree() in both the “igraph” and
“graph” packages. Therefore, you need to specify which degree()
function you want to use, by putting the package name, followed by
”:”, before the name of the function. For example, to use the
degree() function from the “graph” package, you can type
graph::degree(), while to use the degree() function from the
“igraph” package, you can type igraph::degree().




Graphs for protein-protein interaction data in R

Protein-protein interaction data can be described in terms of
graphs. In this practical, we will explore a curated data set of
protein-protein interactions, by using R packages for analysing
and visualising graphs.

We will use three main R packages that have been written for
handling biological graphs: the “graph” package, the “RBGL”
package, and the “Rgraphviz” package. The Rgraphviz package is part
of the Bioconductor set of R packages, so needs to be installed as
part of that set of package (see the Bioconductor webpage at
www.bioconductor.org/docs/install/ [http://www.bioconductor.org/docs/install/]
for details).

We will first analyse a curated data set of protein-protein
interactions in the yeast Saccharomyces cerevisiae extracted from
published papers. This data set comes from with an R package called
“yeastExpData”, which calls the data set “litG”. This data was
first described in a paper by Ge et al (2001) in
Nature Genetics
(http://www.nature.com/ng/journal/v29/n4/full/ng776.html).

To read the litG data set into R, we first need to load the
yeastExpData package, and then we can use the R data() function to
read in the litG data set:

> library("yeastExpData") # Load the yeastExpData package
> data("litG")            # Read the litG data set





When you read in the litG data set using the data() function, it is
stored as a graph in R. In this graph, the vertices (nodes) are
proteins, and edges between vertices indicate that two proteins
interact. There are 2885 different vertices in the graph,
representing 2885 different proteins.

You can print out the number of vertices and edges in a graph in R
by just typing the name of the graph, for example:

> litG
A graphNEL graph with undirected edges
Number of Nodes = 2885
Number of Edges = 315





This tells us that the litG graph has 2885 vertices, and 315 edges.
The 315 edges in the graph represent 315 protein-protein
interactions between 315 pairs of proteins.




Finding the names of vertices in graphs for protein-protein interaction data in R

The “graph” R package contains many functions for analysing graph
data in R. For example, the nodes() function from the graph package
can be used to retrieve the names of the vertices (nodes) in the
graph. For example, we can retrive the names of the vertices in the
litG graph, and store them in a vector “mynodes”, by typing:

> library("graph")        # Load the graph package
> mynodes <- nodes(litG)  # Retrieve the names of the vertices in the litG graph





We can then print the names of the first 10 vertices in the litG
graph, by typing:

> mynodes[1:10]           # Print the names of the first 10 vertices in the litG graph
 [1] "YBL072C" "YBL083C" "YBR009C" "YBR010W" "YBR031W" "YBR093C" "YBR106W"
 [8] "YBR118W" "YBR188C" "YBR191W"





This gives the names of the yeast proteins corresponding to the
first 10 vertices in the litG graph. Note that the order that the
proteins are stored in the graph does not have any meaning; these
10 proteins just happen to be the first 10 stored in the litG
graph. As mynodes is a vector that contains one element for each
vertex in the litG graph, the number of elements mynodes should
be equal to the number of vertices in the litG graph:

> length(mynodes)         # Find the number of vertices in the litG graph
[1] 2885





As expected, we find that the litG graph contains 2885 vertices,
which represent 2885 different yeast proteins.




Finding the names of proteins that a particular protein interacts with

If you are particularly interested in a particular protein in a
protein-protein interaction graph, you may want to print out the
list of the proteins that that protein interacts with. To do this,
you can use the adj() function in the R “graph” package. For
example, to print out the proteins that yeast protein YBR009C
interacts with in the litG graph, you can type:

> adj(litG, "YBR009C")
$YBR009C
[1] "YBR010W" "YNL031C" "YDR227W"





This tells us that protein YBR009C interacts with three other
protein in the litG graph, that is, YBR010W, YNL031C and YDR227W.




Calculating the degree distribution for a graph in R

The degree of a vertex (node) in a graph is the number of
connections that it has to other vertices in the graph.

The degree distribution for a graph is the distribution of degree
values for all the vertices in the graph, that is, the number of
vertices in the graph that have degrees of 0, 1, 2, 3, etc.

In terms of a protein-protein interaction graph, each vertex in the
graph represents a protein, and the degree of a particular vertex
is the number of interactions that that protein has with other
proteins.

You can calculate the degrees of all the vertices in a graph by
using the degree() function in the R “graph” package. The degree()
function returns a vector containing the degrees of each of the
vertices in the graph. Remember that there is a degree() function
in both the “graph” and “igraph” packages, so if you have loaded
both packages, you will need to specify that you want to use the
degree() function in the “graph” package, by writing
graph::degree().

For example, to calculate the degrees of vertices in the litG
graph, we type:

> mydegrees <- graph::degree(litG)
> mydegrees # Print out the values in the vector "mydegrees"
  YBL072C   YBL083C   YBR009C   YBR010W   YBR031W   YBR093C   YBR106W   YBR118W
        0         0         3         3         0         0         0         2





For example, we see from the above results that the yeast protein
YBL072C does not interact with any other protein, while the yeast
protein YBR118W interacts with two other yeast proteins. Only the
first line of the results is shown, as there are 2885 vertices in
the litG graph.

You can sort the vector mydegrees in order of the number of
degrees, by using the sort() function:

> sort(mydegrees)
  YBL072C   YBL083C   YBR031W   YBR093C   YBR106W   YBR188C   YBR191W   YBR206W   YCL007C   YCL018W
        0         0         0         0         0         0         0         0         0         0
...
  YBR198C   YDR392W   YDR448W   YBR160W   YFL039C
        8         8         9        10        12





Only the first and last lines of the output are shown above. You
can see from the last line of the output that there are some
vertices that have high degrees. For example, the vertex
corresponding to the protein YFL039C is 12. This means that the
protein YFL039C interacts with 12 other proteins. Such highly
connected proteins in a protein-protein interaction graph are
sometimes called hub proteins.

We can calculate the degree distribution for a graph by using the
table() function to make a table of how many vertices in the graph
have degrees of 0, 1, 2, 3, etc. For example, to calculate the
degree distribution for the litG graph, you can type:

> table(mydegrees)
mydegrees
   0    1    2    3    4    5    6    7    8    9   10   12
2587  159   58   38   19    7    3    7    4    1    1    1





This tells us that 2587 vertices in the litG graph are not
connected to any other vertices, 159 vertices are connected to one
other vertex, 58 vertices are connected to two other vertices, and
so on. You can calculate the mean degree of the vertices using the
mean() function in R:

> mean(mydegrees)
[1] 0.2183709





The mean degree is only about 0.22 for the litG graph, as most of
the proteins do not interact with any other protein.

It is nice to visualise the degree distribution for a graph by
plotting it as a histogram (using the hist() R function):

> hist(mydegrees, col="red")





[image: image0]




Finding connected components in graphs for protein-protein interaction data in R

If you are analysing a very large graph, it may contain several
subgraphs, where the vertices within each subgraph are connected to
each other by edges, but there are no edges connecting the vertices
in different subgraphs. In this case, the subgraphs are known as
connected components (also called
maximally connected subgraphs).

For example, the graph below contains three connected components:

[image: image1]

Image source:
http://en.wikipedia.org/wiki/Connected_component_(graph_theory)

You can find connected components of a graph in R, by using the
connectedComp function in the “RBGL” package. For example, to find
connected components in the litG graph, we type:

> library("RBGL")
> myconnectedcomponents <- connectedComp(litG)





The commands above store the connected components in the litG graph
in a list myconnectedcomponents. Each connected component is
stored in one element of the list variable myconnectedcomponents.
That is, each element of the list myconnectedcomponents is a
vector containing the names of the proteins in a particular
connected component.

We can print out the yeast proteins that are the vertices of the
first three connected components by printing out the first three
elements in the list myconnectedcomponents. Remember that you
need to use double square brackets to access the elements of a list
variable in R:

> myconnectedcomponents[[1]]
[1] "YBL072C"
> myconnectedcomponents[[2]]
[1] "YBL083C"
> myconnectedcomponents[[3]]
 [1] "YBR009C" "YBR010W" "YNL030W" "YNL031C" "YOL139C" "YAR007C" "YBR073W"
 [8] "YER095W" "YJL173C" "YNL312W" "YBL084C" "YDR146C" "YLR127C" "YNL172W"
[15] "YLR134W" "YMR284W" "YER179W" "YIL144W" "YML104C" "YOR191W" "YDL008W"
[22] "YDL030W" "YDL042C" "YDR004W" "YGR162W" "YMR117C" "YDR386W" "YDR485C"
[29] "YDL043C" "YDR118W" "YMR106C" "YML032C" "YDR076W" "YDR180W" "YDL013W"
[36] "YDR227W"





That is, the first two connected components only contain one
protein each. These two proteins must not have interactions with
any of the other yeast proteins in the litG graph. The third
connected component contains 36 proteins. These 36 proteins are not
necessarily all connected to each other, but each of the 36
proteins must be connected to at least one of the other 35 proteins
in the connected component. Note that the connected components are
not stored in the list myconnectedcomponents in any particular
order; these just happen to be the first three connected components
stored in the list.

To find the total number of connected components in the litG graph,
we can just find the length of the list myconnectedcomponents:

> length(myconnectedcomponents)
[1] 2642





That is, there are 2642 different connected components in the litG
graph. These are 2642 subgraphs of the graph, where there are edges
between the vertices within a subgraph, but no edges between the
2642 subgraphs.

It is interesting to know what is the largest connected component
in a graph. How can we calculate this for the litG graph? Well,
each element of the litG graph contains a vector storing the
proteins in a particular connected component, and the length of
this vector is the number of proteins in that connected component.
Thus, to calculate the sizes of all connected components in the
litG graph, we can use a “for loop” to calculate the length of each
of the vectors in myconnectedcomponents in turn:

> componentsizes <- numeric(2642) # Make a vector for storing the sizes of the 2642 connected components
> for (i in 1:2642) {
   component <- myconnectedcomponents[[i]] # Store the connected component in a vector "component"
   componentsize <- length(component)      # Find the number of vertices in this connected component
   componentsizes[i] <- componentsize      # Store the size of this component
}





In the code above, the line componentsizes <- numeric(2642) makes a
new vector componentsizes which has the same number of elements
as the number of connected components in the litG graph (2642).
This vector componentsizes is then used within the for loop for
storing the size of each connected component. We can now find the
size of the largest connected component in the litG graph by using
the max() R function to find the largest value in the vector
componentsizes:

> max(componentsizes)
[1] 88





That is, the largest connected component in the litG graph has 88
different proteins.

We can also use the table() function in R to make a table of the
number of connected components of different sizes:

> table(componentsizes)
componentsizes
   1    2    3    4    5    6    7    8   12   13   36   88
2587   29   10    7    1    1    2    1    1    1    1    1





This tells us that there is just one connected component with 88
proteins. Furthermore, we see that there are 2587 connected
components that contain just 1 protein each. These proteins
presumably do not have any known interactions with with any other
protein in the litG data set.

To find the connected component that a particular protein belongs to,
you can use the findcomponent function:

> findcomponent <- function(graph,vertex)
  {
     # Function to find the connected component that contains a particular vertex
     require("RBGL")
     found <- 0
     myconnectedcomponents <- connectedComp(graph)
     numconnectedcomponents <- length(myconnectedcomponents)
     for (i in 1:numconnectedcomponents)
     {
        componenti <- myconnectedcomponents[[i]]
        numvertices <- length(componenti)
        for (j in 1:numvertices)
        {
           vertexj <- componenti[j]
           if (vertexj == vertex)
           {
              found <- 1
              return(componenti)
           }
        }
     }
     print("ERROR: did not find vertex in the graph")
  }





The function findcompontent() returns a vector containing the names
of the proteins in the connected component. For example, to find
the connected component containing the protein YBR009C, you can
type:

> mycomponent <- findcomponent(litG, "YBR009C")
> mycomponent # Print out the members of this connected component.
   [1] "YBR009C" "YBR010W" "YNL030W" "YNL031C" "YOL139C" "YAR007C" "YBR073W" "YER095W" "YJL173C" "YNL312W"
  [11] "YBL084C" "YDR146C" "YLR127C" "YNL172W" "YLR134W" "YMR284W" "YER179W" "YIL144W" "YML104C" "YOR191W"
  [21] "YDL008W" "YDL030W" "YDL042C" "YDR004W" "YGR162W" "YMR117C" "YDR386W" "YDR485C" "YDL043C" "YDR118W"
  [31] "YMR106C" "YML032C" "YDR076W" "YDR180W" "YDL013W" "YDR227W"








Extracting a subgraph from a graph in R

If you want to extract a particular subgraph of a graph (that is,
part of a graph), you can use the subGraph function in the “graph”
package. As its arguments (inputs), the subGraph function contains
a vector containing the vertices (nodes) in the subgraph that we’re
interested in, and the graph that the subgraph belongs to.

For example, if we want to extract the subgraph (of graph litG)
that contains the third connected component in the vector
myconnectedcomponents, we type:

> myconnectedcomponents <- connectedComp(litG)
> component3 <- myconnectedcomponents[[3]]
> component3 # Print out the proteins in connected component 3
 [1] "YBR009C" "YBR010W" "YNL030W" "YNL031C" "YOL139C" "YAR007C" "YBR073W"
 [8] "YER095W" "YJL173C" "YNL312W" "YBL084C" "YDR146C" "YLR127C" "YNL172W"
[15] "YLR134W" "YMR284W" "YER179W" "YIL144W" "YML104C" "YOR191W" "YDL008W"
[22] "YDL030W" "YDL042C" "YDR004W" "YGR162W" "YMR117C" "YDR386W" "YDR485C"
[29] "YDL043C" "YDR118W" "YMR106C" "YML032C" "YDR076W" "YDR180W" "YDL013W"
[36] "YDR227W"
> mysubgraph <- subGraph(component3, litG)
> mysubgraph
A graphNEL graph with undirected edges
Number of Nodes = 36
Number of Edges = 48





The commands above store the subgraph corresponding to component3
in a graph object mysubgraph that contains 36 vertices and 48
edges.




Plotting graphs for protein-protein interaction data in R

The “Rgraphviz” R package contains useful functions for plotting
graphs, or plotting parts of graphs (“subgraphs”).

The layoutGraph and renderGraph functions in the Rgraphviz package
can be used to make a nice plot of a subgraph. There are lots of
options for the colours to use for plotting vertices and edges.

For example, if we want to make a plot of the subgraph
corresponding to the third connected component in the vector
myconnectedcomponents, we can type:

> library("Rgraphviz")
> mysubgraph <- subGraph(component3, litG)
> mygraphplot <- layoutGraph(mysubgraph, layoutType="neato")
> renderGraph(mygraphplot)





[image: image2]

The plot above shows a plot of the third connected component in the
graph litG. There are 36 vertices in this subgraph, corresponding
to 36 different yeast proteins. The names of the proteins are shown
in the circles that represent the vertices. The edges between
vertices represent interactions between pairs of proteins.




Detecting communities in a protein-protein interaction graph using R

A property common to many types of graphs, including
protein-protein interaction graphs, is community structure. A
community is often defined as a subset of the vertices in the
graph such that connections btween the vertices are denser than
connections with the rest of the graph. For example, the graph in
the picture below consists of one connected component. However,
within that connected component, we can see three densely connected
subgraphs; these could be said to be three different communities
within the graph:

[image: image3]

Image source:
http://en.wikipedia.org/wiki/Community_structure

In terms of protein-protein interaction networks, if there are
several communities within a connected component (for example,
three communities, as in the picture above), these could represent
three different groups of proteins, where the proteins within one
community interact much more with each other than with proteins in
the other communities.

By detecting communities within a protein-protein interaction
graph, we can detect putative protein complexes, that is, groups
of associated proteins that are probably fairly stable over time.
In other words, protein complexes can be detected by looking for
groups of proteins among which there are many interactions, and
where the members of the complex have few interactions with other
proteins that do not belong to the complex.

There are lots of different methods available for detecting
communities in a graph, and each method will give slightly
different results. That is, the particular method used for
detecting communities will decide how you split a connected
component into one or more communities.

The function findcommunities() below identifies communities within
a graph (or subgraph of a graph). It requires a second function,
findcommunities2(), which is also below:

> findcommunities <- function(mygraph,minsize)
  {
     # Function to find network communities in a graph
     # Load up the igraph library:
     require("igraph")
     # Set the counter for the number of communities:
     cnt <- 0
     # First find the connected components in the graph:
     myconnectedcomponents <- connectedComp(mygraph)
     # For each connected component, find the communities within that connected component:
     numconnectedcomponents <- length(myconnectedcomponents)
     for (i in 1:numconnectedcomponents)
     {
        component <- myconnectedcomponents[[i]]
        # Find the number of nodes in this connected component:
        numnodes <- length(component)
        if (numnodes > 1) # We can only find communities if there is more than one node
        {
           mysubgraph <- subGraph(component, mygraph)
           # Find the communities within this connected component:
           # print(component)
           myvector <- vector()
           mylist <- findcommunities2(mysubgraph,cnt,"FALSE",myvector,minsize)
           cnt <- mylist[[1]]
           myvector <- mylist[[2]]
        }
     }
     print(paste("There were",cnt,"communities in the input graph"))
  }
> findcommunities2 <- function(mygraph,cnt,plot,myvector,minsize)
  {
     # Function to find network communities in a connected component of a graph
     # Find the number of nodes in the input graph
     nodes <- nodes(mygraph)
     numnodes <- length(nodes)
     # Record the vertex number for each vertex name
     myvector <- vector()
     for (i in 1:numnodes)
     {
        node <- nodes[i] # "node" is the vertex name, i is the vertex number
        myvector[`node`] <- i  # Add named element to myvector
     }
     # Create a graph in the "igraph" library format, with numnodes nodes:
     newgraph <- graph.empty(n=numnodes,directed=FALSE)
     # First record which edges we have seen already in the "mymatrix" matrix,
     # so that we don't add any edge twice:
     mymatrix <- matrix(nrow=numnodes,ncol=numnodes)
     for (i in 1:numnodes)
     {
        for (j in 1:numnodes)
        {
           mymatrix[i,j] = 0
           mymatrix[j,i] = 0
        }
     }
     # Now add edges to the graph "newgraph":
     for (i in 1:numnodes)
     {
        node <- nodes[i] # "node" is the vertex name, i is the vertex number
        # Find the nodes that this node is joined to:
        neighbours <- adj(mygraph, node)
        neighbours <- neighbours[[1]] # Get the list of neighbours
        numneighbours <- length(neighbours)
        if (numneighbours >= 1) # If this node "node" has some edges to other nodes
        {
           for (j in 1:numneighbours)
           {
              neighbour <- neighbours[j]
              # Get the vertex number
              neighbourindex <- myvector[neighbour]
              neighbourindex <- neighbourindex[[1]]
              # Add a node in the new graph "newgraph" between vertices i and neighbourindex
              # In graph "newgraph", the vertices are counted from 0 upwards.
              indexi <- i
              indexj <- neighbourindex
              # If we have not seen this edge already:
              if (mymatrix[indexi,indexj] == 0 && mymatrix[indexj,indexi] == 0)
              {
                 mymatrix[indexi,indexj] <- 1
                 mymatrix[indexj,indexi] <- 1
                 # Add edges to the graph "newgraph"
                 newgraph <- add.edges(newgraph, c(i, neighbourindex))
              }
           }
        }
     }
     # Set the names of the vertices in graph "newgraph":
     newgraph <- set.vertex.attribute(newgraph, "name", value=nodes)
     # Now find communities in the graph:
     communities <- spinglass.community(newgraph)
     # Find how many communities there are:
     sizecommunities <- communities$csize
     numcommunities <- length(sizecommunities)
     # Find which vertices belong to which communities:
     membership <- communities$membership
     # Get the names of vertices in the graph "newgraph":
     vertexnames <- get.vertex.attribute(newgraph, "name")
     # Print out the vertices belonging to each community:
     for (i in 1:numcommunities)
     {
        cnt <- cnt + 1
        nummembers <- 0
        printout <- paste("Community",cnt,":")
        for (j in 1:length(membership))
        {
           community <- membership[j]
           if (community == i) # If vertex j belongs to the ith community
           {
              vertexname <- vertexnames[j]
              if (plot == FALSE)
              {
                 nummembers <- nummembers + 1
                 # Print out the vertices belonging to the community
                 printout <- paste(printout,vertexname)
              }
              else
              {
                 # Colour in the vertices belonging to the community
                 myvector[`vertexname`] <- cnt
              }
           }
         }
         if (plot == FALSE && nummembers >= minsize)
         {
            print(printout)
         }
      }
      return(list(cnt,myvector))
   }





The function
findcommunities() uses the function spinglass.community() from the
“igraph” package to identify communities in a graph or subgraph. As
its arguments (inputs), the findcommunities() function takes the
graph/subgraph that we want to find communities in, and the minimum
number of vertices that a community must have to be reported.

For example, to find communities within the subgraph corresponding
to the third connected component of the litG graph, we can type:

> mysubgraph <- subGraph(component3, litG)
> findcommunities(mysubgraph, 1)
[1] "Community 1 : YML104C YOR191W YDL030W YDR485C YDL013W"
[1] "Community 2 : YBR073W YDR146C YLR134W YER179W YIL144W"
[1] "Community 3 : YOL139C YGR162W YMR117C YDR386W YDL043C YDR180W"
[1] "Community 4 : YBL084C YLR127C YNL172W YDL008W YDR118W"
[1] "Community 5 : YAR007C YER095W YJL173C YNL312W YDR004W YML032C YDR076W"
[1] "Community 6 : YBR009C YBR010W YNL030W YNL031C YMR284W YDL042C YMR106C YDR227W"
[1] "There were 6 communities in the input graph"





This tells us that there are six different communities in the
subgraph corresponding to the third connected component of the litG
graph.

Note that if you run findcommunities() again and again on the same
input graph, it might find slightly different sets of communities
each time. This is because it uses a random number generator in the
method that it uses for identifying communities, and the random
number used will be different each time you run the
findcommunities() function, which means that you will get slightly
different answers each time. The answers should be very similar,
however, but you might see a small difference, for example, a large
community might be split into two smaller communities.

You can make a plot of the communities in a graph or subgraph by
using the plotcommunities() function:

> plotcommunities <- function(mygraph)
  {
     # Function to plot network communities in a graph
     # Load the "igraph" package:
     require("igraph")
     # Make a plot of the graph
     graphplot <- layoutGraph(mygraph, layoutType="neato")
     renderGraph(graphplot)
     # Get the names of the nodes in the graph:
     vertices <- nodes(mygraph)
     numvertices <- length(vertices)
     # Now record the colour of each vertex in a vector "myvector":
     myvector <- vector()
     colour <- "red"
     for (i in 1:numvertices)
     {
        vertex <- vertices[i]
        myvector[`vertex`] <- colour   # Add named element to myvector
     }
     # Set the counter for the number of communities:
     cnt <- 0
     # First find the connected components in the graph:
     myconnectedcomponents <- connectedComp(mygraph)
     # For each connected component, find the communities within that connected component:
     numconnectedcomponents <- length(myconnectedcomponents)
     for (i in 1:numconnectedcomponents)
     {
        component <- myconnectedcomponents[[i]]
        # Find the number of nodes in this connected component:
        numnodes <- length(component)
        if (numnodes > 1) # We can only find communities if there is more than one node
        {
           mysubgraph <- subGraph(component, mygraph)
           # Find the communities within this connected component:
           mylist <- findcommunities2(mysubgraph,cnt,"TRUE",myvector,0)
           cnt <- mylist[[1]]
           myvector <- mylist[[2]]
        }
      }
      # Get a set of cnt colours, where cnt is equal to the number of communities found:
      mycolours <- rainbow(cnt)
      # Set the colour of the vertices, so that vertices in each community are of the same colour,
      # and vertices in different communities are different colours:
      myvector2 <- vector()
      for (i in 1:numvertices)
      {
         vertex <- vertices[i]
         community <- myvector[vertex]
         mycolour <- mycolours[community]
         myvector2[`vertex`] <- mycolour
     }
     nodeRenderInfo(graphplot) = list(fill=myvector2)
     renderGraph(graphplot)
 }





For example, to make a plot of the communities in the third
connected component of the litG graph using the plotcommunities()
function, you need to type:

> mysubgraph <- subGraph(component3, litG)
> plotcommunities(mysubgraph)





[image: image4]

In the graph above, the six communities in the third connected
component of the litG graph are coloured with six different
colours.




Reading in protein-protein interaction data in R

In the above example, you looked at the litG data set of
protein-protein interactions, which is a data set that comes with
the “yeastExpData” R package. But what if you want to look at a
data set of protein-protein interactions that does not come from
R?

It is common to store data on protein-protein interactions in a
text file with two columns, where each line of the file contains a
pair of proteins that interact with each other. For example, such a
file may look like this: YKL166C YIL033C
YCR002C YHR107C
YCR002C YJR076C
YCR002C YLR314C
YJR076C YHR107C
This indicates that there are 5 protein-protein interactions,
between protein YKL166C and protein YIL033C, between YCR002C and
YHR107C, between YCR002C and YJR076C, between YCR002C and YLR314C,
and between YJR076C and YHR107C.

The function makeproteingraph() makes a graph based on an input file of
protein-protein interactions, where the first two columns of the input file
indiciate the pairs of proteins that interact:

> makeproteingraph <- function(myfile)
  {
     # Function to make a graph based on protein-protein interaction data in an input file
     require("graph")
     mytable <- read.table(file(myfile)) # Store the data in a data frame
     proteins1 <- mytable$V1
     proteins2 <- mytable$V2
     protnames <- c(levels(proteins1),levels(proteins2))
     # Find out how many pairs of proteins there are
     numpairs <- length(proteins1)
     # Find the unique protein names:
     uniquenames <-  unique(protnames)
     # Make a graph for these proteins with no edges:
     mygraph <- new("graphNEL", nodes = uniquenames)
     # Add edges to the graph:
     # See http://rss.acs.unt.edu/Rdoc/library/graph/doc/graph.pdf for more examples
     weights <- rep(1,numpairs)
     mygraph2 <- addEdge(as.vector(proteins1),as.vector(proteins2),mygraph,weights)
     return(mygraph2)
  }





For example, the example file
http://www.maths.tcd.ie/~avrillee/littlebookofr/ExampleInteractionData
contains the five pairs of interacting proteins listed above. You
can read it in and make a graph for these interacting proteins by
typing:

> thegraph <- makeproteingraph("http://www.maths.tcd.ie/~avrillee/littlebookofr/ExampleInteractionData")





You can then make a plot of this graph as before:

> mygraphplot <- layoutGraph(thegraph, layoutType="neato")
> renderGraph(mygraphplot)
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Creating random graphs in R

A random graph is a graph that is generated by a random process,
where you start off with a certain number of vertices (nodes), and
edges are added by randomly choosing pairs of vertices and making
an edge between the two members of each of those pairs of vertices.
(This is known as the Erdös-Renyi model for random graphs). In a
random graph, vertices with lots of connections are equally likely
as vertices with very few connections. That is, if you calculate
the average degree of the vertices in a random graph, you will find
that the degrees of most of the vertices in the graph is near to
the average.

It is often useful and interesting to compare the properties of
biological graphs to random graphs. In order to do this, you need
to be able to generate some random graphs. The function
makerandomgraph() in R makes a random graph with a
certain number of edges:

> makerandomgraph <- function(numvertices,numedges)
  {
     # Function to make a random graph
     require("graph")
     # Make a vector with the names of the vertices
     mynames <- sapply(seq(1,numvertices),toString)
     myrandomgraph <- randomEGraph(mynames, edges = numedges)
     return(myrandomgraph)
  }





This function takes as its argument (input)
the number of vertices and edges that you want the random graph to
have to have. For example, to create a random graph that has 15
vertices and 43 edges, we type:

> myrandomgraph <- makerandomgraph(15, 43)
> myrandomgraph # Print out the number of vertices and edges in the graph
A graphNEL graph with undirected edges
Number of Nodes = 15
Number of Edges = 43





In the R code above, we tell R to give the vertices the labels 1 to
15. We can of course plot the random graph:

> myrandomgraphplot <- layoutGraph(myrandomgraph, layoutType="neato")
> renderGraph(myrandomgraphplot)
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Summary

In this practical, you will have learnt to use the following R
functions:


	data() to load a data set that comes with a package into R

	table() for making a table of the data in a vector, or finding
out how many elements in a vector have a particular value

	sort() for sorting a vector



All of these functions belong to the standard installation of R.

You have also learnt the following R functions that belong to the
additional R packages:


	nodes() from the “graph” package for getting a list of the names
of vertices in a graph

	adj() from the “graph” package for getting a list of the
vertices that a particular vertex is connected to in a graph

	degree() from the “graph” package for calculating the degree of
each of the vertices in a graph

	connectedComp() from the “RBGL” package for identifying
connected components in a graph

	subGraph() from the “graph” package for extracting a subgraph
from a graph

	layoutGraph() and renderGraph() from the “Rgraphviz” package for
plotting a graph or subgraph






Links and Further Reading

Some links are included here for further reading.

For background reading on graphs and protein-protein interaction
graphs, it is recommended to read Chapters 1, 2 and 4 of
Principles of Computational Cell Biology: from protein complexes to cellular networks
by Volkhard Helms (Wiley-VCH;
http://www.wiley-vch.de/publish/en/books/bySubjectLS00/ISBN3-527-31555-1).

For a more in-depth introduction to R, a good online tutorial is
available on the “Kickstarting R” website,
cran.r-project.org/doc/contrib/Lemon-kickstart [http://cran.r-project.org/doc/contrib/Lemon-kickstart/].

There is also a useful introduction to R in Appendix A (“A Brief
Introduction to R”) of the book
Computational genome analysis: an introduction by Deonier, Tavaré
and Waterman (Springer).

There is another nice (slightly more in-depth) tutorial to R
available on the “Introduction to R” website,
cran.r-project.org/doc/manuals/R-intro.html [http://cran.r-project.org/doc/manuals/R-intro.html].

For more in-depth information and more examples on using the
“graph” package for analysing graphs, look at the “graph” package
documentation,
www.cran.r-project.org/web/packages/graph/index.html [http://www.cran.r-project.org/web/packages/graph/index.html].

More information and examples on using the “RBGL” package is
available in the RBGL documentation at
www.cran.r-project.org/web/packages/RBGL/index.html [http://www.cran.r-project.org/web/packages/RBGL/index.html].

More information and examples on using the “Rgraphviz” package is
available in the Rgraphviz documentation at
www.bioconductor.org/packages/release/bioc/html/Rgraphviz.html [http://www.bioconductor.org/packages/release/bioc/html/Rgraphviz.html].

More information and examples on using the “igraph” package is
available in the “igraph” documentation at
www.cran.r-project.org/web/packages/igraph/index.html [http://www.cran.r-project.org/web/packages/igraph/index.html].

There are also very useful chapters on “Using Graphs for
Interactome Data” and “Graph Layout” in the book
Bioconductor Case Studies by Florian Hahne, Wolfgang Huber,
Robert Gentleman and Seth Falcon
(http://www.bioconductor.org/pub/biocases/).
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Exercises

Answer the following questions, using the R package. For each
question, please record your answer, and what you typed into R to
get this answer.


	Q1. de Lichtenberg et al identified protein-protein complexes in the yeast Saccharomyces cerevisiae that form during the yeast cell cycle. Their data set of pairs of interacting proteins is available for download at the website http://www.cbs.dtu.dk/databases/cellcycle/yeast_complexes/binary_interaction_data.txt. Read this protein-protein interaction data set into R as a graph. How many vertices (proteins) and edges (protein-protein interactions) are there in the graph?

	There are about 6600 predicted genes in the S. cerevisiae genome.
Is this the same as the number of vertices in the graph of de
Lichtenberg et al‘s data? If not, can you explain why?
Note: the full paper by de Lichtenberg et al is available at
http://www.sciencemag.org/content/307/5710/724.abstract

	Q2. What is the minimum, maximum and mean number of interactions for the proteins in the graph of de Lichtenberg et al‘s data?

	Can you find an example of a hub protein?
Make a histogram plot of the number of interactions for the
S. cerevisiae proteins in de Lichtenberg et al‘s data set.

	Q3. Make a random graph with the same number of vertices and edges as the graph of de Lichtenberg et al‘s data. What is the minimum, maximum and mean degree of the vertices for the random graph?

	Is there a difference in the minimum, maximum and mean degree of
the vertices for the random graph, when compared to the graph of de
Lichtenberg et al‘s data?
Compare a histogram plot of the degree distribution for the random
graph to a histogram plot of the degree distribution for
Lichtenberg et al‘s data set. What do the differences tell you?

	Q4. How many connected components exist in the graph of de Lichtenberg et al‘s data?

	How many connected components just contain 2 proteins?
Make a plot of the largest connected component in the graph of de
Lichtenberg et al‘s data.

	Q5. What proteins does yeast protein YPR119W interact with, in de Lichtenberg et al‘s data?

	Draw a picture of the connected component that yeast protein
YPR119W belongs to. Can you see YPR119W in the picture?
Plot the communities in this connected component. Which communities
does YPR119W belong to?
What protein complex(es) do you think YPR119W belongs to?
Can you find anything about the nature of the interactions between
YPR119W and the proteins that it interacts with? Hint: search for
YPR119W and the proteins that it interacts with in the
Saccharomyces Genome Database
(www.yeastgenome.org/ [http://www.yeastgenome.org/]). It may
also be useful to look at Figure 3 in de Lichtenberg et al‘s
paper
(http://www.sciencemag.org/content/307/5710/724.abstract).
Can you identify the complex(es) that YPR119W belongs to in Figure
1 of de Lichtenberg et al‘s paper?
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Answers to Revision Exercises 1


Q1.

What is the length of (total number of base-pairs in) the Schistosoma mansoni mitochondrial genome
(NCBI accession NC_002545), and how many As, Cs, Gs and Ts does it contain?

To do this, you need to go to the www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov] website
and type the S. mansoni mitochondrial genome (accession NC_002545) in the search box, and press ‘Search’.

On the search results page, you should see ‘1’ beside the word ‘Nucleotide’, meaning that there was one hit to a sequence record in the NCBI Nucleotide database, which contains DNA and RNA sequences. If you click on the word ‘Nucleotide’, it will bring you to the sequence record, which should be the NCBI sequence record for the S.mansoni mitochondrial genome (ie. for accession NC_002545).

To save the sequence as FASTA-format file, click on ‘Send’ at the top right of the page, and choose ‘File’,
then select ‘FASTA’ from the drop-down list labelled ‘Format’, then click ‘Create File’. Save the file
with a name that you will remember (eg. “smansoni.fasta”) in your “My Documents” folder.

You can then read the sequence into R by typing:

> library("seqinr")                                 # load the SeqinR R package
> smansoni <- read.fasta(file="smansoni.fasta")     # read in the sequence file
> smansoniseq <- smansoni[[1]]                      # get the sequence
> length(smansoniseq)                               # get the length of the sequence
  [1] 14415
> table(smansoniseq)                                # get the number of As, Cs, Gs, Ts
  smansoniseq
    a    c    g    t
  3654 1228 3307 6226





Thus, the mitochondrial genome is 14415 bases long, and consists of 3654 As, 1228 Cs, 3307 Gs and 6226 Ts.

Note that, as far as I know, it is not possible to retrieve the sequence for accession NC_002545 directly using
the “query()” function in SeqinR, because the S. mansoni mitochondrial genome sequence does not seem to be
stored in any of the ACNUC sub-databases.




Q2.

What is the length of the Brugia malayi mitochondrial genome (NCBI accession NC_004298),
and how many As, Cs, Gs and Ts does it contain?

To do this, you need to go to the www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov] website
and type the B. malayi mitochondrial genome (accession NC_004298) in the search box, and press ‘Search’.

As in Q1, go to the NCBI record for the sequence, and save the sequence in a FASTA format file, for example,
called “bmalayi.fasta”.

Then read the sequence into R, and get its length and composition by typing:

> bmalayi <- read.fasta(file="bmalayi.fasta")       # read in the sequence file
> bmalayiseq <- bmalayi[[1]]                        # get the sequence
> length(bmalayiseq)                                # get the length of the sequence
  [1] 13657
> table(bmalayiseq)                                 # get the number of As, Cs, Gs, Ts
  bmalayiseq
   a    c    g    t
  2950 1054 2297 7356





The sequence is 13657 bases long, and consists of 2950 As, 1054 Cs, 2297 Gs and 7356 Ts.

Note that, as far as I know, it is not possible to retrieve the sequence for accession NC_004298 directly using
the “query()” function in SeqinR, because the B. malayi mitochondrial genome sequence does not seem to be
stored in any of the ACNUC sub-databases.




Q3.

What is the probability of the Brugia malayi mitochondrial genome sequence (NCBI accession NC_004298),
according to a multinomial model in which the probabilities of As, Cs, Gs and Ts (pA, pC, pG, and pT)
are set equal to the fraction of As, Cs, Gs and Ts in the Schistosoma mansoni mitochondrial genome?

First we can calculate the frequencies of A, C, G and T in the S. mansoni mitochondrial sequence. We
can do this by making a table of the counts of As, Cs, Gs and Ts, and dividing the counts of the bases
by the total sequence length to get frequencies:

> mytable <- table(smansoniseq)
> mytable
    a    c    g    t
  3654 1228 3307 6226
> mytable <- mytable/length(smansoniseq) # Divide the counts by the sequence length, to get frequencies
> mytable
     a          c          g          t
  0.25348595 0.08518904 0.22941381 0.43191120
> freqA <- mytable[["a"]]                # Get the frequency of As
> freqC <- mytable[["c"]]                # Get the frequency of Cs
> freqG <- mytable[["g"]]                # Get the frequency of Gs
> freqT <- mytable[["t"]]                # Get the frequency of Ts
> probabilities <- c(freqA,freqC,freqG,freqT) # Make a vector containing the frequencies of As,Cs,Gs,Ts
> probabilities
  [1] 0.25348595 0.08518904 0.22941381 0.43191120





First we need to make a function to calculate the probability of a sequence, given
a particular multinomial model (with a certain pA, pC, pG, pT). To do this, we can
write the following R function “multinomialprob()”:

> multinomialprob <- function(mysequence, probabilities)
  {
      nucleotides   <- c("A", "C", "G", "T") # Define the alphabet of nucleotides
      names(probabilities) <- nucleotides
      mysequence    <- toupper(mysequence)# Convert the sequence to uppercase letters
      seqlength     <- length(mysequence) # Get the length of the input sequence
      seqprob       <- numeric()          # Make a variable to hold to probability of the whole sequence
      for (i in 1:seqlength)              # For each letter in the input sequence
      {
         nucleotide <- mysequence[i]      # Find the ith nucleotide in the sequence
         # Calculate the probability of the ith nucleotide in the sequence
         nucleotideprob <- probabilities[nucleotide]
         # The probability of the whole sequence is calculated by multiplying together
         # the probabilities of the nucleotides at each sequence position
         if (i == 1) { seqprob <- nucleotideprob[[1]]           }
         else        { seqprob <- seqprob * nucleotideprob[[1]] }
      }
      # Return the value of the probability of the whole sequence
      return(seqprob)
  }





The function multinomialprob() takes as its arguments (inputs) a vector that
contains the DNA sequence, and a vector containing the probabilities pA, pC, pG, and pT.

You will need to copy and paste this function into R to use it. You can then use it to calculate the
probability of the B. malayi mitochondrial sequence, using a multinomial model where pA, pC, pG, pT
are set equal to the fraction of As, Cs, Gs, and Ts in the S. mansoni mitohondrial sequence (which we
have already stored in the vector probabilities, see above):

> multinomialprob(bmalayiseq, probabilities)
  0





In this case, the probability is so small that it is effectively zero.




Q4.

What are the top three most frequent 4-bp words (4-mers) in the genome of the
bacterium Chlamydia trachomatis strain D/UW-3/CX (NCBI accession NC_000117), and
how many times do they occur in its sequence?

To do this, you need to go to the www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov] website
and type the C. trachomatis D/UW-3/CX genome (accession NC_000117) in the search box, and press ‘Search’.

As in Q1, go to the NCBI record for the sequence, and save the sequence in a FASTA format file, for example,
called “ctrachomatis.fasta”.

Alternatively, you can retrieve the sequence using the SeqinR package. The sequence is a fully
sequenced bacterial genome, so is in the ACNUC sub-database called “bacterial”. Thus, we type in R:

> choosebank("bacterial")                                # select the ACNUC sub-database to search
> query("ctrachomatis", "AC=NC_000117")                  # specify the query
> ctrachomatisseq <- getSequence(ctrachomatis$req[[1]])  # get the sequence
> closebank()                                            # close the connection to the ACNUC sub-database





We can now find the most frequent 4-bp words in the sequence by using the “count()” function from SeqinR:

> mytable <- count(ctrachomatisseq, 4)                   # get the count for each 4-bp word
> sort(mytable)                                          # sort the 4-bp words, by the number of occurrences of each word
  ccgg  cggg  ggcc  cccg  cgcg  cggc  gccg  cgcc  ggcg  cggt  gccc  cacg  gggc
  1180  1198  1206  1215  1287  1321  1334  1407  1435  1481  1512  1520  1537
  cgtg  accg  ggtc  gacc  cgac  gtcg  gcgg  ccgc  acgg  gacg  cgtc  ccgt  gtac
  1541  1545  1558  1567  1606  1647  1658  1678  1716  1750  1786  1802  1802
  ...
  agag  agct  ctct  tatt  cttc  tttg  caaa  gaag  ttta  taaa  attt  aaat  tttc
  6836  6860  6937  6946  7234  7280  7289  7353  7671  7731  8100  8144  8462
  gaaa  aaag  cttt  tctt  aaga  ttct  agaa  tttt  aaaa
  8563  9099  9199 10060 10069 10492 10581 14021 14122





The three most frequent 4-bp words are “aaaa” (14122 occurrences), “tttt” (14021 occurrences) and “agaa” (10581 occurrences).




Q5.

Write an R function to generate a random DNA sequence that is n letters long (that is,
n bases long) using a multinomial model in which the probabilities pA, pC, pG,
and pT are set equal to the fraction of As, Cs, Gs and Ts in the Schistosoma mansoni
mitochondrial genome.

In Q3 above, we stored the frequencies of A, C, G and T in the S. mansoni mitochondrial genome
in a vector called probabiltiies:

> probabilities
  [1] 0.25348595 0.08518904 0.22941381 0.43191120





The R function “generateSeqWithMultinomialModel()” below is an R function for generating a
random sequence with a multinomial model, where the probabilities of the different letters are
set equal to the fraction of As, Cs, Gs, and Ts in the S. mansoni mitochondrial genome (ie.
with vector probabilities as its input):

> generateSeqWithMultinomialModel <- function(n, probabilities)
  {
     # Define the letters in the alphabet
     letters <- c("A", "C", "G", "T")
     # Make a random sequence of length n letters, using the multinomial model with probabilities "probabilities"
     seq <- sample(letters, n, rep=TRUE, prob=probabilities) # Sample with replacement
     # Return the sequence
     return(seq)
  }





To use this function to generate a 10-bp random sequence, using vector probabilities as input, we would type:

> generateSeqWithMultinomialModel(10, probabilities)
  [1] "T" "A" "T" "G" "T" "G" "G" "A" "G" "G"





Each time we call the function, it will create a slightly different 10-bp sequence:

> generateSeqWithMultinomialModel(10, probabilities)
  [1] "A" "G" "T" "A" "G" "G" "T" "T" "T" "T"
> generateSeqWithMultinomialModel(10, probabilities)
  [1] "C" "G" "A" "T" "A" "T" "G" "T" "T" "A"








Q6.

Give an example of using your function from Q5 to calculate a random sequence that is 20 letters
long, using a multinomial model with pA =0.28, pC =0.21, pG =0.22, and pT =0.29.

First we need to define a vector myprobabilities containing the probabilities of A, C, G, and T:

> myprobabilities <- c(0.28, 0.21, 0.22, 0.29)





Then we can use the function “generateSeqWithMultinomialModel()” to calculate a 20-bp random
sequence, using the vector myprobabilities as its input:

> generateSeqWithMultinomialModel(20, myprobabilities)
  [1] "C" "C" "G" "A" "T" "A" "T" "C" "C" "G" "C" "C" "T" "G" "A" "G" "T" "T" "T"
  [20] "C"








Q7.

How many protein sequences from rabies virus are there in the NCBI Protein database?

To do this, you need to go to the www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov] website
and select ‘Protein’ from the drop-down box above the search box.

Then type “rabies virus”[ORGN] in the search box, and press ‘Search’.

On the results page, it should say “Results: 1 to 20 of 11768”, meaning that there are 11768 protein sequences from rabies virus in
the database [as of 16-Jun-2011]. Note that if you carry out this search at a later date, you may find more sequences, as the database
is growing all the time.




Q8.

What is the NCBI accession for the Mokola virus genome?

To do this, you need to go to the www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov] website
and select ‘Genome’ from the drop-down box above the search box.

Then type “Mokola virus”[ORGN] in the search box, and press ‘Search’.

You should get a hit to accession NC_006429, the Mokola virus genome sequence.

Note that alternatively you can go to the www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov] website, and
type “Mokola virus”[ORGN] in the search box, and press ‘Search’. On the results page, you will see lots of hits
to the Nucleotide and Protein databases, and 1 hit to the Genome database. If you click on the 1 hit beside
“Genome”, it will bring you to accession NC_006429, the Mokola virus genome sequence.




Contact

I will be grateful if you will send me (Avril Coghlan [http://www.sanger.ac.uk/research/projects/parasitegenomics/]) corrections or suggestions for improvements to
my email address alc@sanger.ac.uk
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Answers to the exercises on DNA Sequence Statistics (2)


Q1.

Draw a sliding window plot of GC content in the DEN-1 Dengue virus genome, using a window size of 200 nucleotides. Do you see any regions of unusual DNA content in the genome (eg. a high peak or low trough)?

To do this, you first need to download the DEN-1 Dengue virus sequence from the NCBI database.
To do this follow the steps in the chapter DNA Sequence Statistics (1).

Then read the sequence into R using the SeqinR package:

> library("seqinr")
> dengue <- read.fasta(file = "den1.fasta")
> dengueseq <- dengue[[1]]





Then write a function to make a sliding window plot:

> slidingwindowplot <- function(windowsize, inputseq)
  {
     starts <- seq(1, length(inputseq)-windowsize, by = windowsize)
     n <- length(starts)
     chunkGCs <- numeric(n)
     for (i in 1:n) {
        chunk <- inputseq[starts[i]:(starts[i]+windowsize-1)]
        chunkGC <- GC(chunk)
        chunkGCs[i] <- chunkGC
     }
     plot(starts,chunkGCs,type="b",xlab="Nucleotide start position",ylab="GC content")
  }





Then make a sliding window plot with a window size of 200 nucleotides:

> slidingwindowplot(200, dengueseq)





[image: image0]

The GC content varies from about 45% to about 50% throughout the DEN-1 Dengue virus genome, with
some noticeable troughs at about 2500 bases and at about 4000 bases along the sequence, where the
GC content drops to about 40%. There is no strong difference between the start and end of the
genome, although from around bases 4000-7000 the GC content is quite high (about 50%), and from
about 2500-3500 and 7000-9000 bases the GC content is relatively low (about 43-47%).

We can also make a sliding window plot of GC content using a window size of 2000 nucleotides:

> slidingwindowplot(2000, dengueseq)





[image: image1]

In this picture it is much more noticeable that the GC content is relatively high from around
4000-7000 bases, and lower on either side (from 2500-3500 and 7000-9000 bases).




Q2.

Draw a sliding window plot of GC content in the genome sequence for the bacterium Mycobacterium leprae strain TN (accession NC_002677) using a window size of 20000 nucleotides. Do you see any regions of unusual DNA content in the genome (eg. a high peak or low trough)?

To do this, you first need to download the Mycobacterium leprae sequence from the NCBI
database.
To do this follow the steps in the chapter DNA Sequence Statistics (1).

Then read the sequence into R using the SeqinR package:

> leprae <- read.fasta(file = "leprae.fasta")
> lepraeseq <- leprae[[1]]





Then make a sliding window plot with a window size of 20000 nucleotides:

> slidingwindowplot(20000, lepraeseq)





[image: image2]

We see the highest peak in GC content at about 1 Mb into the M. leprae genome. We also
see troughs in GC content at about 1.1 Mb, and at about 2.6 Mb.

With a window size of 200 nucleotides, the plot is very messy, and we cannot see the peaks and troughs
in GC content so easily:

> slidingwindowplot(200, lepraeseq)





[image: image3]

With a window size of 200,000 nucleotides, the plot is very smooth, and we cannot see the peaks and troughs
in GC content very easily:

> slidingwindowplot(200000, lepraeseq)





[image: image4]




Q3.

Write a function to calculate the AT content of a DNA sequence (ie. the fraction of the nucleotides in the sequence that are As or Ts). What is the AT content of the Mycobacterium leprae TN genome?

Here is a function to calculate the AT content of a genome sequence:

> AT <- function(inputseq)
  {
     mytable <- count(inputseq, 1) # make a table with the count of As, Cs, Ts, and Gs
     mylength <- length(inputseq) # find the length of the whole sequence
     myAs <- mytable[[1]] # number of As in the sequence
     myTs <- mytable[[4]] # number of Ts in the sequence
     myAT <- (myAs + myTs)/mylength
     return(myAT)
  }





We can then use the function to calculate the AT content of the M. leprae genome:

> AT(lepraeseq)
[1] 0.4220325





You should notice that the AT content is (1 minus GC content), ie. (AT content + GC content = 1):

> GC(lepraeseq)
[1] 0.5779675
> 0.4220325 + 0.5779675
[1] 1








Q4.

Write a function to draw a sliding window plot of AT content. Use it to make a sliding window plot of AT content along the Mycobacterium leprae TN genome, using a windowsize of 20000 nucleotides. Do you notice any relationship between the sliding window plot of GC content along the Mycobacterium leprae genome, and the sliding window plot of AT content?

We can write a function to write a sliding window plot of AT content:

> slidingwindowplotAT <- function(windowsize, inputseq)
  {
     starts <- seq(1, length(inputseq)-windowsize, by = windowsize)
     n <- length(starts)
     chunkATs <- numeric(n)
     for (i in 1:n) {
        chunk <- inputseq[starts[i]:(starts[i]+windowsize-1)]
        chunkAT <- AT(chunk)
        chunkATs[i] <- chunkAT
     }
     plot(starts,chunkATs,type="b",xlab="Nucleotide start position",ylab="AT content")
 }





We can then use this function to make a sliding window plot with a window size of 20000 nucleotides:

> slidingwindowplotAT(20000, lepraeseq)





[image: image5]

This is the mirror image of the plot of GC content (because AT equals 1 minus GC):

> slidingwindowplot(20000, lepraeseq)





[image: image6]




Q5.

Is the 3-nucleotide word GAC GC over-represented or under-represented in the Mycobacterium leprae TN genome sequence?

We can get the number of counts of each of the 3-nucleotide words by typing:

> count(lepraeseq, 3)
   aaa   aac   aag   aat   aca   acc   acg   act   aga   agc   agg   agt   ata   atc   atg
 32093 48714 36319 32592 44777 67449 57326 37409 31957 62473 38946 37470 25030 57245 44268
   att   caa   cac   cag   cat   cca   ccc   ccg   cct   cga   cgc   cgg   cgt   cta   ctc
 32973 52381 64102 64345 43838 64869 46037 87560 38504 78120 82057 89358 57451 29004 39954
   ctg   ctt   gaa   gac   gag   gat   gca   gcc   gcg   gct   gga   ggc   ggg   ggt   gta
 64730 36401 43486 61174 40728 58009 66775 80319 83415 62752 44002 81461 47651 69957 33139
   gtc   gtg   gtt   taa   tac   tag   tat   tca   tcc   tcg   tct   tga   tgc   tgg   tgt
 60958 65955 50421 21758 32971 29454 25076 48245 43166 78685 31424 49318 67270 67116 45595
   tta   ttc   ttg   ttt
 22086 43363 54346 32374





There are 61,174 GACs in the sequence.

The total number of 3-nucleotide words is calculated by typing:

> sum(count(lepraeseq,3))
[1] 3268201





Therefore, the observed frequency of GAC is 61174/3268201 = 0.01871794.

To calculate the expected frequency of GAC, first we need to get the number of counts of 1-nucleotide words by typing:

> count(lepraeseq, 1)
    a      c      g      t
 687041 938713 950202 692247





The sequence length is 3268203 bp.
The frequency of G is 950202/3268203 = 0.2907414.
The frequency of A is 687041/3268203 = 0.2102198.
The frequency of C is 938713/3268203 = 0.2872260.
The expected frequency of GAC is therefore 0.2907414*0.2102198*0.2872260 = 0.01755514.

The value of Rho is therefore the observed frequency/expected frequency = 0.01871794/0.01755514 = 1.066237.
That, is there are about 1.1 times as many GACs as expected. This means that GAC is slightly over-represented in this sequence.
The difference from 1 is so little however that it might not be statistically significant.

We can search for a function to calculate rho by typing:

> help.search("rho")
  base::getHook                          Functions to Get and Set Hooks for Load, Attach, Detach and Unload
  seqinr::rho                            Statistical over- and under- representation of dinucleotides in a sequence
  stats::cor.test                        Test for Association/Correlation Between Paired Samples
  survival::pbc                          Mayo Clinic Primary Biliary Cirrhosis Dat





There is a function rho in the SeqinR package. For example, we can use it to calculate Rho for
words of length 3 in the M. leprae genome by typing:

> rho(lepraeseq, wordsize=3)
       aaa       aac       aag       aat       aca       acc       acg       act       aga
  1.0570138 1.1742862 0.8649101 1.0653761 1.0793820 1.1899960 0.9991680 0.8949893 0.7610323
       agc       agg       agt       ata       atc       atg       att       caa       cac
  1.0888781 0.6706048 0.8856096 0.8181874 1.3695545 1.0462815 1.0697245 1.2626819 1.1309452
       cag       cat       cca       ccc       ccg       cct       cga       cgc       cgg
  1.1215062 1.0487995 1.1444773 0.5944657 1.1169725 0.6742135 1.3615987 1.0467726 1.1261261
       cgt       cta       ctc       ctg       ctt       gaa       gac       gag       gat
  0.9938162 0.6939044 0.6996033 1.1197319 0.8643241 1.0355868 1.0662370 0.7012887 1.3710523
       gca       gcc       gcg       gct       gga       ggc       ggg       ggt       gta
  1.1638601 1.0246015 1.0512300 1.0855155 0.7576632 1.0266049 0.5932565 1.1955191 0.7832457
       gtc       gtg       gtt       taa       tac       tag       tat       tca       tcc
  1.0544820 1.1271276 1.1827465 0.7112314 0.7888126 0.6961501 0.8135266 1.1542345 0.7558461
       tcg       tct       tga       tgc       tgg       tgt       tta       ttc       ttg
  1.3611325 0.7461477 1.1656391 1.1636701 1.1469683 1.0695410 0.7165237 1.0296334 1.2748168
       ttt
  1.0423929





The Rho value for GAC is given as 1.0662370, in agreement with our calculation above.
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Answers to the exercises on DNA Sequence Statistics (1)


Q1.

What are the last twenty nucleotides of the DEN-1 Dengue virus genome sequence?

To answer this, you first need to install the “SeqinR” R package, and download
the DEN-1 Dengue genome sequence from the NCBI database and save it as
a file “den1.fasta” in the “My Documents” folder.

Then to find the length of the DEN-1 Dengue virus genome sequence, type in the R console:

> library("seqinr")
> dengue <- read.fasta(file="den1.fasta")
> dengueseq <- dengue[[1]]
> length(dengueseq)
[1] 10735





This tells us that the length of the sequence is 10735 nucleotides.
Therefore, the last 20 nucleotides are from 10716 to 10735. You can
extract the sequence of these nucleotides by typing:

> dengueseq[10716:10735]
[1] "c" "t" "g" "t" "t" "g" "a" "a" "t" "c" "a" "a" "c" "a" "g" "g" "t" "t" "c"
[20] "t"








Q2.

What is the length in nucleotides of the genome sequence for the bacterium Mycobacterium leprae strain TN (accession NC_002677)?

To answer this question, you first need to retrieve the Mycobacterium leprae TN genome
sequence from the NCBI database. You can use this by going to the NCBI website and searching
for it via the NCBI website, or alternatively by using the getncbiseq() function in R.

To get the Mycobacterium leprae TN genome via the NCBI website, it�s necessary to first go to the NCBI website (www.ncbi.nlm.nih.gov) and search for NC_002677 and download it as a fasta format file (eg. “leprae.fasta”) and save it in the “My Documents” folder. You can then read the sequence into
R from the file by typing:

Then in R type:

> leprae <- read.fasta(file="leprae.fasta")
> lepraeseq <- leprae[[1]]





Alternatively, to get the Mycobacterium leprae TN genome using the getncbiseq() function in R,
you first need to copy the getncbiseq() function and paste it into R, and then you can retrieve
the sequence (accession NC_002677) by typing in R:

> lepraeseq <-  getncbiseq("NC_002677")





Now we have the Mycobacterium leprae TN genome sequence stored in the vector lepraseq in R.
We can get the length of the sequence by getting the length of the vector:

> length(lepraeseq)
[1] 3268203








Q3.

How many of each of the four nucleotides A, C, T and G, and any other symbols, are there in the Mycobacterium leprae TN genome sequence?

Type:

> table(lepraeseq)
lepraeseq
     a      c      g      t
687041 938713 950202 692247








Q4.

What is the GC content of the Mycobacterium leprae TN genome sequence, when (i) all non-A/C/T/G nucleotides are included, (ii) non-A/C/T/G nucleotides are discarded?

Find out how the GC function deals with non-A/C/T/G nucleotides, type:

> help("GC")





Type:

> GC(lepraeseq)
[1] 0.5779675
> GC(lepraeseq, exact=FALSE)
[1] 0.5779675





This gives 0.5779675 or 57.79675%. This is the GC content when non-A/C/T/G nucleotides are not taken into account.

The length of the M. leprae sequence is 3268203 bp, and it has 938713 Cs and 950202 Gs, and 687041 As and 692247 Ts. So to calculating the GC content when only considering As, Cs, Ts and Gs, we can also
type:

> (938713+950202)/(938713+950202+687041+692247)
[1] 0.5779675





To take non-A/C/T/G nucleotides into account when calculating GC, type:

> GC(lepraeseq, exact=TRUE)
[1] 0.5779675





We get the same answer as when we ignored non-A/C/G/T nucleotides. This is actually because the M. leprae TN sequence does not have any non-A/C/G/T nucleotides.

However, many other genome sequences do contain non-A/C/G/T nucleotides. Note that under ‘Details’ in the box that appears when you type ‘help(‘GC’)’, it says : “When exact is set to TRUE the G+C content is estimated with ambiguous bases taken into account. Note that this is time expensive. A first pass is made on non-ambiguous bases to estimate the probabilities of the four bases in the sequence. They are then used to weight the contributions of ambiguous bases to the G+C content.”




Q5.

How many of each of the four nucleotides A, C, T and G are there in the complement of the Mycobacterium leprae TN genome sequence?

First you need to search for a function to calculate reverse complement, eg. by typing:

> help.search("complement")





You will find that there is a function seqinr::comp that complements a nucleic acid sequence. This means it is a function in the SeqinR package.

Find out how to use this function by typing:

> help("comp")





The help says “Undefined values are returned as NA”. This means that the complement of non-A/C/T/G symbols will be returned as NA.

To find the number of A, C, T, and G in the reverse complement type:

> complepraeseq <- comp(lepraeseq)
> table(complepraeseq)
 complepraeseq
      a      c      g      t
 692247 950202 938713 687041





Note that in the M. leprae sequence we had 687041 As, in the complement have 687041 Ts.
In the M. leprae sequence we had 938713 Cs, in the complement have 938713 Gs.
In the M. leprae sequence we had 950202 Gs, in the complement have 950202 Cs.
In the M. leprae sequence we had 692247 Ts, in the complement have 692247 As.




Q6.

How many occurrences of the DNA words CC, CG and GC occur in the Mycobacterium leprae TN genome sequence?

> count(lepraeseq, 2)
    aa     ac     ag     at     ca     cc     cg     ct     ga     gc     gg
 149718 206961 170846 159516 224666 236971 306986 170089 203397 293261 243071
    gt     ta     tc     tg     tt
 210473 109259 201520 229299 152169





Get count for CC is 236,971; count for CG is 306,986; count for GC is 293,261.




Q7.

How many occurrences of the DNA words CC, CG and GC occur in the (i) first 1000 and (ii) last 1000 nucleotides of the Mycobacterium leprae TN genome sequence?

Type:

> length(lepraeseq)
[1] 3268203





to find the length of the M. leprae genome sequence.  It is 3,268,203 bp. Therefore the first 1000 nucleotides will have indices 1-1000, and the last thousand nucleotides will have indices 3267204-3268203. We find the count of DNA words of length 2 by typing:

> count(lepraeseq[1:1000],2)
 aa ac ag at ca cc cg ct ga gc gg gt ta tc tg tt
 78 95 51 49 85 82 92 54 68 63 39 43 42 73 31 54
> count(lepraeseq[3267204:3268203],2)
 aa ac ag at ca cc cg ct ga gc gg gt ta tc tg tt
 70 85 44 55 94 81 87 50 53 75 49 51 36 72 48 49





To check that the subsequences that you looked at are 1000 nucleotides long, you can type:

> length(lepraeseq[1:1000])
[1] 1000
> length(lepraeseq[3267204:3268203])
[1] 1000
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Answers to the exercises on Sequence Alignment


Q1.

Download FASTA-format files of the Brugia malayi Vab-3 protein (UniProt accession A8PZ80) and the Loa loa Vab-3 protein (UniProt accession E1FTG0) sequences from UniProt.

We can use SeqinR to retrieve these sequences by typing:

> library("seqinr")                           # load the SeqinR package
> choosebank("swissprot")                     # select the ACNUC sub-database to be searched
> query("brugia", "AC=A8PZ80")                # search for the Brugia sequence
> brugiaseq <- getSequence(brugia$req[[1]])   # get the Brugia sequence
> query("loa", "AC=E1FTG0")                   # search for the Loa sequence
> loaseq <- getSequence(loa$req[[1]])         # get the Loa sequence
> closebank()                                 # close the connection to the ACNUC sub-database








Q2.

What is the alignment score for the optimal global alignment between the Brugia malayi Vab-3 protein and the Loa loa Vab-3 protein, when you use the BLOSUM50 scoring matrix, a gap opening penalty of -10 and a gap extension penalty of -0.5?

We can use the Biostrings R package to answer this, by typing:

> library("Biostrings")                       # load the Biostrings package
> data(BLOSUM50)                              # load the BLOSUM50 scoring matrix
> brugiaseqstring <- c2s(brugiaseq)           # convert the Brugia sequence to a string
> loaseqstring <- c2s(loaseq)                 # convert the Loa sequence to a string
> brugiaseqstring <- toupper(brugiaseqstring) # convert the Brugia sequence to uppercase
> loaseqstring <- toupper(loaseqstring)       # convert the Loa sequence to a string
> myglobalAlign <- pairwiseAlignment(brugiaseqstring, loaseqstring, substitutionMatrix = "BLOSUM50",
  gapOpening = -9.5, gapExtension = -0.5, scoreOnly = FALSE) # align the two sequences
> myglobalAlign
  Global PairwiseAlignedFixedSubject (1 of 1)
  pattern: [1] MK--LIVDSGHTGVNQLGGVFVNGRPLPDSTRQKI...IESYKREQPSIFAWEIRDKLLHEKVCSPDTIPSA
  subject: [1] SSSNLFADSGHTGVNQLGGVFVNGRPLPDSTRQKI...IESYKREQPSIFAWEIRDKLLHEKVCSPDTIPSV
  score: 777.5





The alignment score is 777.5.




Q3.

Use the printPairwiseAlignment() function to view the optimal global alignment between Brugia malayi Vab-3 protein and the Loa loa Vab-3 protein, using the BLOSUM50 scoring matrix, a gap opening penalty of -10 and a gap extension penalty of -0.5.

To do this, first you must copy and paste the printPairwiseAlignment() function into R.

Then you can use it to view the alignment that you obtained in Q2:

> printPairwiseAlignment(myglobalAlign)
  [1] "MK--LIVDSGHTGVNQLGGVFVNGRPLPDSTRQKIVDLAHQGARPCDISRILQVSNGCVS 58"
  [1] "SSSNLFADSGHTGVNQLGGVFVNGRPLPDSTRQKIVDLAHQGARPCDISRILQVSNGCVS 60"
  [1] " "
  [1] "KILCRYYESGTIRPRAIGGSKPRVATVSVCDKIESYKREQPSIFAWEIRDKLLHEKVCSP 118"
  [1] "KILCRYYESGTIRPRAIGGSKPRVATVSVCDKIESYKREQPSIFAWEIRDKLLHEKVCSP 120"
  [1] " "
  [1] "DTIPSA 178"
  [1] "DTIPSV 180"
  [1] " "





The two proteins are very similar over their whole lengths, with few gaps and mostly identities (few mismatches).




Q4.

What global alignment score do you get for the two Vab-3 proteins, when you use the BLOSUM62 alignment matrix, a gap opening penalty of -10 and a gap extension penalty of -0.5?

Again, we can use the Biostrings R package to answer this, by typing:

> data(BLOSUM62)                              # load the BLOSUM62 scoring matrix
> myglobalAlign2 <- pairwiseAlignment(brugiaseqstring, loaseqstring, substitutionMatrix = "BLOSUM62",
  gapOpening = -9.5, gapExtension = -0.5, scoreOnly = FALSE) # align the two sequences
> myglobalAlign2
  Global PairwiseAlignedFixedSubject (1 of 1)
  pattern: [1] MK--LIVDSGHTGVNQLGGVFVNGRPLPDSTRQKI...IESYKREQPSIFAWEIRDKLLHEKVCSPDTIPSA
  subject: [1] SSSNLFADSGHTGVNQLGGVFVNGRPLPDSTRQKI...IESYKREQPSIFAWEIRDKLLHEKVCSPDTIPSV
  score: 593.5





The alignment score when BLOSUM62 is used is 593.5, while the score when BLOSUM50 is used is 777.5 (from Q2).

We can print out the alignment and see if the alignment made using BLOSUM62 is different from that
when BLOSUM50 is used:

> printPairwiseAlignment(myglobalAlign2)
  [1] "MK--LIVDSGHTGVNQLGGVFVNGRPLPDSTRQKIVDLAHQGARPCDISRILQVSNGCVS 58"
  [1] "SSSNLFADSGHTGVNQLGGVFVNGRPLPDSTRQKIVDLAHQGARPCDISRILQVSNGCVS 60"
  [1] " "
  [1] "KILCRYYESGTIRPRAIGGSKPRVATVSVCDKIESYKREQPSIFAWEIRDKLLHEKVCSP 118"
  [1] "KILCRYYESGTIRPRAIGGSKPRVATVSVCDKIESYKREQPSIFAWEIRDKLLHEKVCSP 120"
  [1] " "
  [1] "DTIPSA 178"
  [1] "DTIPSV 180"
  [1] " "





The alignment made using BLOSUM62 is actually the same as that made using BLOSUM50, so it doesn’t
matter which scoring matrix we use in this case.




Q5.

What is the statistical significance of the optimal global alignment for the Brugia malayi and Loa loa Vab-3 proteins made using the BLOSUM50 scoring matrix, with a gap opening penalty of -10 and a gap extension penalty of -0.5?

To answer this, we can first make 1000 random sequences using a multinomial model in which the probabilities
of the 20 amino acids are set equal to their frequencies in the Brugia malayi Vab-3 protein.

First you need to first copy and paste the generateSeqsWithMultinomialModel() function into R,
and then you can use it as follows:

> randomseqs <- generateSeqsWithMultinomialModel(brugiaseqstring,1000)





This makes a vector randomseqs, containing 1000 random sequences, each of
the same length as the Brugia malayi Vab-3 protein.

We can then align each of the 1000 random sequences to the Loa loa Vab-3 protein, and store
the scores for each of the 1000 alignments in a vector randomscores:

> randomscores <- double(1000) # Create a numeric vector with 1000 elements
> for (i in 1:1000)
  {
     score <- pairwiseAlignment(loaseqstring, randomseqs[i], substitutionMatrix = "BLOSUM50",
       gapOpening = -9.5, gapExtension = -0.5, scoreOnly = TRUE)
     randomscores[i] <- score
  }





The score for aligning the Brugia malayi and Loa loa Vab-3 proteins using BLOSUM50 with a
gap opening penalty of -10 and gap extension penalty of -0.5 was 777.5 (from Q2).

We can see what fraction of the 1000 alignments between the random sequences (of the same
composition as Brugia malayi Vab-3) and Loa loa Vab-3 had scores equal to or higher than 777.5:

> sum(randomscores >= 777.5)
[1] 0





We see that none of the 1000 alignments had scores equal to or higher than 777.5.

Thus, the p-value for the alignment of Brugia malayi and Loa loa Vab-3 proteins is 0, and
we can therefore conclude that the alignment score is statistically significant (as it is less than 0.05).
Therefore, it is very likely that the Brugia malayi Vab-3 and Loa loa Vab-3 proteins are
homologous (related).




Q6.

What is the optimal global alignment score between the Brugia malayi Vab-6 protein and the Mycobacterium leprae chorismate lyase protein?

To calculate the optimal global alignment score, we must first retrieve the M. leprae
chorismate lyase sequence:

> choosebank("swissprot")
> query("leprae", "AC=Q9CD83")
> lepraeseq <- getSequence(leprae$req[[1]])
> closebank()
> lepraeseqstring <- c2s(lepraeseq)
> lepraeseqstring <- toupper(lepraeseqstring)





We can then align the Brugia malayi Vab-3 protein sequence to the M. leprae chorismate
lyase sequence:

> myglobalAlign3 <- pairwiseAlignment(brugiaseqstring, lepraeseqstring, substitutionMatrix = "BLOSUM50",
  gapOpening = -9.5, gapExtension = -0.5, scoreOnly = FALSE) # align the two sequences
> myglobalAlign3
  Global PairwiseAlignedFixedSubject (1 of 1)
  pattern: [1] M-----------------KLIVDSGHTGVNQLGGV...------INYAKQNNNLL----DRFILP---FSKL
  subject: [1] MTNRTLSREEIRKLDRDLRILVATNGT-LTRVLNV...DTPREELDRCQYSNDIDTRSGDRFVLHGRVFKNL
  score: 67.5





The alignment score is 67.5.

We can print out the alignment as follows:

> printPairwiseAlignment(myglobalAlign3)
  [1] "M-----------------KLIVDSGHTGVNQLGGVFVNGRPLPDSTRQKIVDLAHQGARP 43"
  [1] "MTNRTLSREEIRKLDRDLRILVATNGT-LTRVLNVVANEEIVVDIINQQLLDVA-----P 54"
  [1] " "
  [1] "-------CDISRILQ---VSNGCVSKILCRYYESGTI---RPRAIGG-----SKPRVATV 85"
  [1] "KIPELENLKIGRILQRDILLKGQKSGILFVAAESLIVIDLLPTAITTYLTKTHHP-IGEI 113"
  [1] " "
  [1] "SVCDKIESYKREQ-------PSIFA----WEIRDKLLHEKVCSPDTIPSAVV-------- 126"
  [1] "MAASRIETYKEDAQVWIGDLPCWLADYGYWDL---------------PKRAVGRRYRIIA 158"
  [1] " "
  [1] "--EAIIV-----------------INYAKQNNNLL----DRFILP---FSKL 160"
  [1] "GGQPVIITTEYFLRSVFQDTPREELDRCQYSNDIDTRSGDRFVLHGRVFKNL 218"
  [1] " "





The alignment does not look very good, it contains many gaps and mismatches and few matches.

In Q5, we made a vector randomseqs that contains 1000 random sequences generated using a multinomial
model in which the probabilities of the 20 amino acids are set equal to their frequencies in
the Brugia malayi Vab-3 protein.

To calculate a statistical significance for the alignment between Brugia malayi Vab-3 and
M. leprae chorismate lyase, we can calculate the alignment scores for the 1000 random sequences
to M. leprae chorismate lyase:

> randomscores <- double(1000) # Create a numeric vector with 1000 elements
> for (i in 1:1000)
  {
     score <- pairwiseAlignment(lepraeseqstring, randomseqs[i], substitutionMatrix = "BLOSUM50",
       gapOpening = -9.5, gapExtension = -0.5, scoreOnly = TRUE)
     randomscores[i] <- score
  }





We can then see how many of the 1000 alignment score exceed the actual alignment score for
B. malayi Vab-3 and M. leprae chorismate lyase (67.5):

> sum(randomscores >= 67.5)
[1] 22





We see that 22 of the 1000 scores for the 1000 random sequences to M. leprae chorismate lyase
are higher than the actual alignment score of 67.5. Therefore the P-value for the alignment score
is 22/1000 = 0.022. This is just under 0.05, and so is quite near to the general cutoff for statistical
significance (0.05). However, in fact it is close enough to 0.05 that we should have some doubt
about whether the alignment is statistically significant.

In fact, the B. malayi Vab-3 and M. leprae chorismate lyase proteins are not known to be
homologous (related), and so it is likely that the relatively high alignment score (67.5) is
just due to chance alone.
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Answers to the exercises on Sequence Databases


Q1.

What information about the rabies virus sequence (NCBI accession NC_001542) can you obtain from its annotations in the NCBI Sequence Database?

To do this, you need to go to the www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov] website
and type the rabies virus genome sequence accession (NC_001542) in the search box, and press ‘Search’.

On the search results page, you should see ‘1’ beside the word ‘Nucleotide’, meaning that there was one hit to a sequence record in the NCBI Nucleotide database, which contains DNA and RNA sequences. If you click on the word ‘Nucleotide’, it will bring you to the sequence record, which should be the NCBI sequence record for the rabies virus’ genome (ie. for accession NC_001542):

[image: image7]

On the webpage (above), you can see the DEFINITION, ORGANISM and REFERENCE fields of the NCBI record:

DEFINITION: Rabies virus, complete genome.

ORGANISM: Rabies virus

REFERENCE: There are several papers (the first is):
AUTHORS: Tordo,N., Poch,O., Ermine,A., Keith,G. and Rougeon,F.

TITLE: Completion of the rabies virus genome sequence determination: highly conserved domains among the L (polymerase) proteins of unsegmented negative-strand RNA viruses

JOURNAL: Virology 165 (2), 565-576 (1988)

There are also some other references, for papers published about the rabies virus genome sequence.

An alternative way of retrieving the annotations for the rabies virus sequence is to use the SeqinR R package.
As the rabies virus is a virus, its genome sequence should be in the “refseqViruses” ACNUC sub-database.
Therefore, we can perform the following query to retrieve the annotations for the rabies virus
genome sequence (accession NC_001542):

> library("seqinr")                                 # load the SeqinR R package
> choosebank("refseqViruses")                       # select the ACNUC sub-database to be searched
> query("rabies", "AC=NC_001542")                   # specify the query
> annots <- getAnnot(rabies$req[[1]])               # retrieve the annotations
> annots[1:20]                                      # print out the first 20 lines of the annotations
  [1] "LOCUS       NC_001542              11932 bp ss-RNA     linear   VRL 08-DEC-2008"
  [2] "DEFINITION  Rabies virus, complete genome."
  [3] "ACCESSION   NC_001542"
  [4] "VERSION     NC_001542.1  GI:9627197"
  [5] "DBLINK      Project: 15144"
  [6] "KEYWORDS    ."
  [7] "SOURCE      Rabies virus"
  [8] "  ORGANISM  Rabies virus"
  [9] "            Viruses; ssRNA negative-strand viruses; Mononegavirales;"
  [10] "            Rhabdoviridae; Lyssavirus."
  [11] "REFERENCE   1  (bases 5388 to 11932)"
  [12] "  AUTHORS   Tordo,N., Poch,O., Ermine,A., Keith,G. and Rougeon,F."
  [13] "  TITLE     Completion of the rabies virus genome sequence determination:"
  [14] "            highly conserved domains among the L (polymerase) proteins of"
  [15] "            unsegmented negative-strand RNA viruses"
  [16] "  JOURNAL   Virology 165 (2), 565-576 (1988)"
  [17] "   PUBMED   3407152"
  [18] "REFERENCE   2  (bases 1 to 5500)"
  [19] "  AUTHORS   Tordo,N., Poch,O., Ermine,A., Keith,G. and Rougeon,F."
  [20] "  TITLE     Walking along the rabies genome: is the large G-L intergenic region"
> closebank()








Q2.

How many nucleotide sequences are there from the bacterium Chlamydia trachomatis in the NCBI Sequence Database?

To answer this, you need to go to www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov]
and select “Nucleotide” from the drop-down list at the top
of the webpage, as you want to search for nucleotide (DNA or RNA) sequences.

Then in the search box, type “Chlamydia trachomatis”[ORGN] and press ‘Search’:

[image: image8]

Here [ORGN] specifies the organism you are interested in, that is, the species name in Latin.

The results page should give you a list of the hits to sequence records in the NCBI Nucleotide database:

[image: image9]

It will say “Found 35577 nucleotide sequences.   Nucleotide (35429)   GSS (148)”.
This means that 35,577 sequences were found, of which 35429 are DNA or RNA sequences, and
148 are DNA sequences from the Genome Sequence Surveys (GSS), that is, from
genome sequencing projects [as of 15-Jun-2011]. Note that there are new sequences
being added to the database continuously, so if you check this again in a couple of months, you will
probably find a higher number of sequences (eg. 36,000 sequences).

Note: if you just go to the www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov] database,
and search for “Chlamydia trachomatis”[ORGN]
(without choosing “Nucleotide” from the drop-down list), you will see 35429 hits to the Nucleotide
database and 148 to the GSS (Genome Sequence Survey) database:

[image: image10]

Note also that if you search for “Chlamydia trachomatis”, without using [ORGN] to specify the organism,
you will get 56032 hits to the Nucleotide database and 149 to the GSS database, but some of these might
not be Chlamydia trachomatis sequences - some could be sequences from other species for which the NCBI sequence
record contains the phrase “Chlamydia trachomatis” somewhere.

An alternative way to search for nucleotide sequences from the bacterium Chlamydia trachomatis is to
use the SeqinR package. We want to find nucleotide sequences, so the correct ACNUC sub-database to search
is the “genbank” sub-database. Thus, we can carry out our search by typing:

> library("seqinr")                                 # load the SeqinR R package
> choosebank("genbank")                             # select the ACNUC sub-database to be searched
> query("Ctrachomatis", "SP=Chlamydia trachomatis") # specify the query
> Ctrachomatis$nelem                                # print out the number of matching sequences
  [1] 35471
> closebank()





We find 35,471 nucleotide sequences from Chlamydia trachomatis. We do not get exactly the same number
of sequences as we got when we searched via the NCBI website (35,577 sequences), but the numbers are very close.
The likely reasons for the differences could be that the ACNUC “genbank” sub-database excludes some sequences from
whole genome sequencing projects from the NCBI Nucleotide database, and in addition, the ACNUC databases
are updated very regularly, but may be missing a few sequences that were added to the NCBI database
in the last day or two.




Q3.

How many nucleotide sequences are there from the bacterium Chlamydia trachomatis in the RefSeq part of the NCBI Sequence Database?

To answer this, you need to go to www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov]
and select “Nucleotide” from the drop-down list
at the top of the webpage, as you want to search for nucleotide sequences.

Then in the search box, type “Chlamydia trachomatis”[ORGN] AND srcdb_refseq[PROP] and press ‘Search’:

[image: image11]

Here [ORGN] specifies the organism, and [PROP] specifies a property of the sequences (in this case that
they belong to the RefSeq subsection of the NCBI database).

At the top of the results page, it should say “Results: 1 to 20 of 29 sequences”, so there were
29 matching sequences [as of 15-Jun-2011].
As for Q2, if you try this again in a couple of months, the number will probably be higher, due to extra
sequences added to the database.

Note that the sequences in Q2 are all Chlamydia trachomatis DNA and RNA sequences in the NCBI database.
The sequences in Q3 gives the Chlamydia trachomatis DNA and RNA sequences in the RefSeq part of the NCBI
database, which is a subsection of the database for high-quality manually-curated data.

The number of sequences in RefSeq is much fewer than the total number of C. trachomatis sequences,
partly because low quality sequences are never added to RefSeq, but also because RefSeq curators have
probably not had time to add all high-quality sequences to RefSeq (this is a time-consuming process,
as the curators add additional information to the NCBI Sequence records in RefSeq, such as references to
papers that discuss a particular sequence).

An alternative way to search for nucleotide sequences from the bacterium Chlamydia trachomatis in RefSeq
use the SeqinR package. We want to find RefSeq sequences, so the correct ACNUC sub-database to search
is the “refseq” sub-database. Thus, we can carry out our search by typing:

> library("seqinr")                                  # load the SeqinR R package
> choosebank("refseq")                               # select the ACNUC sub-database to be searched
> query("Ctrachomatis2", "SP=Chlamydia trachomatis") # specify the query
> Ctrachomatis2$nelem                                # print out the number of matching sequences
  [1] 1
> closebank()





We find 1 RefSeq sequence from Chlamydia trachomatis. We do not get exactly the same number
of sequences as we got when we searched via the NCBI website (29 sequences). This is because the
29 sequences found via the NCBI website include whole genome sequences, but the whole genome sequences
from bacteria are stored in the ACNUC “bacterial” sub-database, and so are not in the ACNUC “refseq”
sub-database.




Q4.

How many nucleotide sequences were submitted to NCBI by Matthew Berriman?

To answer this, you need to go to www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov],
and select “Nucleotide” from the drop-down list,
as you want to search for nucleotide sequences.

Then in the search box, type “Berriman M”[AU] and press ‘Search’.

Here [AU] specifies the name of the person who either submitted the sequence to the NCBI database,
or wrote a paper describing the sequence.

The results page should look like this:

[image: image12]

On the top of the results page, it says [as of 15-Jun-2011]: “Found 487270 nucleotide sequences.   Nucleotide (277546)   EST (121075)   GSS (88649)”. This means that 487270 DNA/RNA sequences were either submitted to the NCBI database by someone called M. Berriman, or were described in a paper by someone called M. Berriman. Of these, 277546 were DNA/RNA sequences, 121075 were EST sequences (part of mRNAs), and 88649 were DNA sequences from genome sequencing projects (GSS or Genome Sequence Survey sequences).

Note that unfortunately the NCBI website does not allow us to search for “Berriman Matthew”[AU] so we
cannot be sure that all of these sequences were submitted by Matthew Berriman.

Note also that the search above will find sequences that were either submitted to the NCBI database
by M. Berriman, or described in a paper on which M. Berriman was an author. Therefore, not all of the
sequences found were necessarily submitted by M. Berriman.

An alternative way to search for nucleotide sequences submitted by M. Berriman is to use the SeqinR
package. We want to find nucleotide sequences, so the appropriate ACNUC sub-database to search is
“genbank”. Therefore, we type:

> library("seqinr")                  # load the SeqinR R package
> choosebank("genbank")              # select the ACNUC sub-database to be searched
> query("mberriman", "AU=Berriman")  # specify the query
> mberriman$nelem                    # print out the number of matching sequences
 [1] 169701
> closebank()





We find 169,701 matching sequences. This is less than the number found by searching via the NCBI
website (487,270 sequences). The difference is probably due to the fact that the “genbank” ACNUC
sub-database excludes some sequences from the NCBI Nucleotide database (eg. short sequences from
genome sequencing projects).

Note that the “AU=Berriman” query will find sequences submitted or published by someone called Berriman.
We are not able to specify the initial of the first name of this person using the “query()” command, so
we cannot specify that the person is called “M. Berriman”.




Q5.

How many nucleotide sequences from the nematode worms are there in the RefSeq Database?

To answer this, you need to go to www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov]
and select “Nucleotide” from the drop-down list, as you want to search for nucleotide sequences.

Then in the search box, type Nematoda[ORGN] AND srcdb_refseq[PROP] and press ‘Search’.

Here [ORGN] specifies the group of species that you want to search for sequences from.
In Q3, [ORGN] was used to specify the name of one organism (Chlamydia trachomatis).
However, you can also use [ORGN] to specify the name of a group of
organisms, for example, Fungi[ORGN] would search for fungal sequences or Mammalia[ORGN]
would search for mammalian sequences. The name of the group of species that you want to
search for must be given in Latin, so to search for sequences
from nematode worms we use the Latin name Nematoda.

The search page should say at the top ‘Results: 1 to 20 of 145355’ [as of 15-Jun-2011].
This means that 145,355 DNA or RNA sequences were found from nematode worm species in the RefSeq database.
These sequences are probably from a wide range of nematode worm species, including the model nematode worm
Caenorhabditis elegans, as well as parasitic nematode species.

An alternative way to search for RefSeq nucleotide sequences from nematode worms is to use the SeqinR package.
We want to find nucleotide sequences that are in RefSeq, so the appropriate ACNUC sub-database to search is
“refseq”. Therefore, we type:

> library("seqinr")                  # load the SeqinR R package
> choosebank("refseq")               # select the ACNUC sub-database to be searched
> query("nematodes", "SP=Nematoda")  # specify the query
> nematodes$nelem                    # print out the number of matching sequences
 [1] 55241
> closebank()





That is, using SeqinR, we find 55,241 DNA or RNA sequences from nematode worms in the RefSeq database.
This is less than the number of sequences found by searching via the NCBI website (145,355 sequences).
This is because the “refseq” ACNUC sub-database does not contain all of the sequences in the NCBI
RefSeq database, for various reasons, for example, some of the sequences in the NCBI RefSeq database
(eg. whole genome sequences) are in other ACNUC sub-databases.




Q6.

How many nucleotide sequences for collagen genes from nematode worms are there in the NCBI Database?

To answer this, you need to go to www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov]
and select “Nucleotide” from the drop-down list, as you want to search for nucleotide sequences.

Then in the search box, type Nematoda[ORGN] AND collagen.

Here [ORGN] specifies that we want sequences from nematode worms. The phrase “AND collagen” means that the word collagen
must appear somewhere in the NCBI entries for those sequences, for example, in the sequence name, or in a description
of the sequence, or in the title of a paper describing the sequence, etc.

On the results page, you should see ‘Found 8437 nucleotide sequences.   Nucleotide (1642)   EST (6795)’ [as of 15-Jun-2011].
This means that 8437 DNA or RNA sequences for collagen genes from nematode worms were found, of which 6795 are EST sequences
(parts of mRNAs). Note that these 8437 nucleotide sequences may not all necessarily be for collagen genes, as some of the
NCBI records found may be for other genes but contain the word “collagen” somewhere in the NCBI record (for example, in
the title of a cited paper). However, a good number of them are probably collagen sequences from nematodes.

An alternative way to search for collagen nucleotide sequences from nematode worms is to use the SeqinR package.
We want to find nucleotide sequences, so the appropriate ACNUC sub-database to search is “genbank”.
To search for collagen genes, we can specify “collagen” as a keyword by using “K=collagen” in our query.
Therefore, we type:

> library("seqinr")                                # load the SeqinR R package
> choosebank("genbank")                            # select the ACNUC sub-database to be searched
> query("collagen", "SP=Nematoda AND K=collagen")  # specify the query
> collagen$nelem                                   # print out the number of matching sequences
 [1] 60
> closebank()





That is, using SeqinR, we find 60 DNA or RNA sequences with the keyword “collagen” from nematode worms.
This is less than the number of sequences found by searching via the NCBI website (8437 sequences).
This is probably partly because the ACNUC “genbank” sub-database excludes some sequences that are in the NCBI
Nucleotide database (eg. short sequences from genome sequencing projects), but also partly because
the method used to assign keywords to sequences in ACNUC is quite conservative and relatively few
sequences seem to be assigned the keyword “collagen”. However, presumably most of the sequences tagged
with the keyword “collagen” are collagen genes (while the search via the NCBI website may have picked
up many non-collagen genes, as explained above).




Q7.

How many mRNA sequences for collagen genes from nematode worms are there in the NCBI Database?

To answer this, you need to go to www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov],
and select “Nucleotide” from the drop-down sequences, as you want to search for nucleotide sequences
(nucleotide sequences include DNA sequences and RNA sequences, such as mRNAs).

Then in the search box, type Nematoda[ORGN] AND collagen AND “biomol mRNA”[PROP].

Here [ORGN] specifies the name of the group of species, collagen specifies that we want to find NCBI entries
that include the word collagen, and [PROP] specifies a property of those sequences (that they are mRNAs, in this case).

The search page should say ‘Found 7751 nucleotide sequences.   Nucleotide (956)   EST (6795)’ [as of 15-Jun-2011].
This means that 7751 mRNA sequences from nematodes were found that contain the word ‘collagen’ in the NCBI record. Of the
7751, 6795 are EST sequences (parts of mRNAs).

Note that in Q6 we found 8437 nucleotide (DNA or RNA) sequences from nematode worms. In this question, we found out that
only 7751 of those sequences are mRNA sequences. This means that the other (8437-7751=) 686 sequences must be DNA sequences,
or other types of RNA sequences (not mRNAs) such as tRNAs or rRNAs.

An alternative way to search for collagen mRNA sequences from nematode worms is to use the SeqinR package.
mRNA sequences are nucleotide sequences, so the appropriate ACNUC sub-database to search is “genbank”.
To search for mRNAs, we can specify “M=mRNA” in our query. Therefore, we type:

> library("seqinr")                                            # load the SeqinR R package
> choosebank("genbank")                                        # select the ACNUC sub-database to be searched
> query("collagen2", "SP=Nematoda AND K=collagen AND M=mRNA")  # specify the query
> collagen2$nelem                                              # print out the number of matching sequences
 [1] 14
> closebank()





We find 14 nematode mRNA sequences labelled with the keyword “collagen”. Again, we find less sequences than found
when searching via the NCBI website (7751 sequences), but as in Q6, the search using the keyword “collagen” in the
SeqinR package may be more likely to pick up true collagen sequences (rather than other sequences that just happen
to contain the word “collagen” somewhere in their NCBI entries).




Q8.

How many protein sequences for collagen proteins from nematode worms are there in the NCBI database?

To answer this, you need to go to www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov],
and select “Protein” from the drop-down list, as you want to search for protein sequences.

Then type in the search box: Nematoda[ORGN] AND collagen and press ‘Search’:

[image: image13]

On the results page, you should see ‘1 to 20 of 1982’. This means that 1982 protein sequences from nematode
worms were found that include the word collagen in the NCBI sequence entries [as of 15-Jun-2011].

As far as I know, there is not an ACNUC sub-database that contains all the protein sequences from the
NCBI Protein database, and therefore it is not currently possible to carry out the same query using SeqinR.




Q9.

What is the accession number for the Trypanosoma cruzi genome in NCBI?

There are two ways that you can answer this.

The first method is to go to www.ncbi.nlm.nih.gov [http://www.ncbi.nlm.nih.gov]
and select “Genome” from the drop-down list, as you want to search for genome sequences.

Then type in the search box: “Trypanosoma cruzi”[ORGN] and press ‘Search’:

[image: image14]

This will search the NCBI Genome database, which contains fully sequenced genome sequences.

The results page says ‘All:1’, and lists just one NCBI record, the genome sequence for Trypanosoma cruzi
strain CL Brener, which has accession NZ_AAHK00000000:

[image: image15]

The second method of answering the question is to go directly to the NCBI Genomes webpage [http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome].

Click on the ‘Eukaryota’ link at the middle the page, as Trypanosoma cruzi is a eukaryotic species.

This will give you a complete list of all the eukaryotic genomes that have been fully sequenced.

Go to the ‘Edit’ menu of your web browser, and choose ‘Find’, and search for ‘Trypanosoma cruzi’:

[image: image16]

You should find Trypanosoma cruzi strain CL Brener.
You will also find that there are several ongoing genome sequencing projects listed for other strains of
Trypanosoma cruzi: strains JR cl. 4, Sylvio X10/1, Y, and Esmeraldo Esmeraldo cl. 3.

If you look 7th column of the table, you will see that it says “Assembly” for strains CL Brener and Sylvio X10/1,
meaning that genome assemblies are available for these two strains. Presumably the other strains are still being
sequenced, and genome assemblies are not yet available.

The link ‘GB’ (in green) at the far right of the webpage gives a link to the NCBI record for the sequence.
In this case, the link for Trypanosoma cruzi strain CL Brener leads us to the NCBI record for accession
AAHK01000000. This is actually an accession for the T. cruzi strain CL Brener sequencing project, rather than
for the genome sequence itself. On the top right of the page, you will see a link “Genome”, and if you click
on it, it will bring you to the NCBI accession NZ_AAHK00000000, the genome sequence for Trypanosoma cruzi strain CL Brener.

Of the other T. cruzi strains listed, there is only a ‘GB’ link for one other strain, Sylvio X10/1.
If you click on the link for Trypanosoma cruzi strain Sylvio X10/1, it will bring you to the
NCBI record for accession ADWP01000000, the accession for the T. cruzi strain Sylvio X10/1 sequencing
project.

Note that the answer is slightly different for the answer from the first method above, which
did not find the information on the genome projects for strains JR cl. 4, Sylvio X10/1, Y, and Esmeraldo Esmeraldo cl. 3,
because the sequencing projects for these species are still ongoing.




Q10.

How many fully sequenced nematode worm species are represented in the NCBI Genome database?

To answer this question, you need to go to the NCBI Genome webpage [http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome].

In the search box at the top of the page, type Nematoda[ORGN] to search for genome sequences from nematode
worms, using the Latin name for the nematode worms.

On the results page, you will see ‘Items 1 - 20 of 63’, indicating that 63 genome sequences from nematode worms
have been found. If you look down the page, you will see however that many of these are mitochondrial genome
sequences, rather than chromosomal genome sequences.

If you are just interested in chromosomal genome sequences, you can type ‘Nematoda[ORGN] NOT mitochondrion’ in the
search box, to search for non-mitochondrial sequences. This should give you 16 sequences, which are all chromosomal
genome sequences for nematode worms, including the species Caenorhabditis elegans, Caenorhabditis remanei,
Caenorhabditis briggsae, Loa loa (which causes subcutaneous filariasis), and Brugia malayi
(which causes lymphatic filariasis [http://www.who.int/lymphatic_filariasis/en/]).

Thus, there are nematode genome sequences from five different
species that have been fully sequenced (as of 15-Jun-2011). Because nematode worms are multi-chromosomal species,
there may be several chromosomal sequences for each species.

Note that when you search the NCBI Genome database [http://www.ncbi.nlm.nih.gov/sites/entrez?db=Genome], you will
find the NCBI records for completely sequenced genomes (completely sequenced nematode genomes in this case).

If you are interested in partially sequenced genomes, that is sequences from genome sequencing projects that are
still in progress, you can go to the NCBI Genome Projects website [http://www.ncbi.nlm.nih.gov/genomeprj]. If you
search the NCBI Genome Projects database for Nematoda[ORGN], you will find that genome
sequencing projects for many other nematode species are ongoing, including for the species Onchocerca volvulus
(which causes onchocerciasis [http://www.who.int/topics/onchocerciasis/en/]),
Wuchereria bancrofti (which causes lymphatic filariasis [http://www.who.int/lymphatic_filariasis/en/]), and
Necator americanus (which causes soil-transmitted helminthiasis [http://www.who.int/intestinal_worms/en/]).




Contact

I will be grateful if you will send me (Avril Coghlan [http://www.sanger.ac.uk/research/projects/parasitegenomics/]) corrections or suggestions for improvements to
my email address alc@sanger.ac.uk




License

The content in this book is licensed under a Creative Commons Attribution 3.0 License [http://creativecommons.org/licenses/by/3.0/].
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